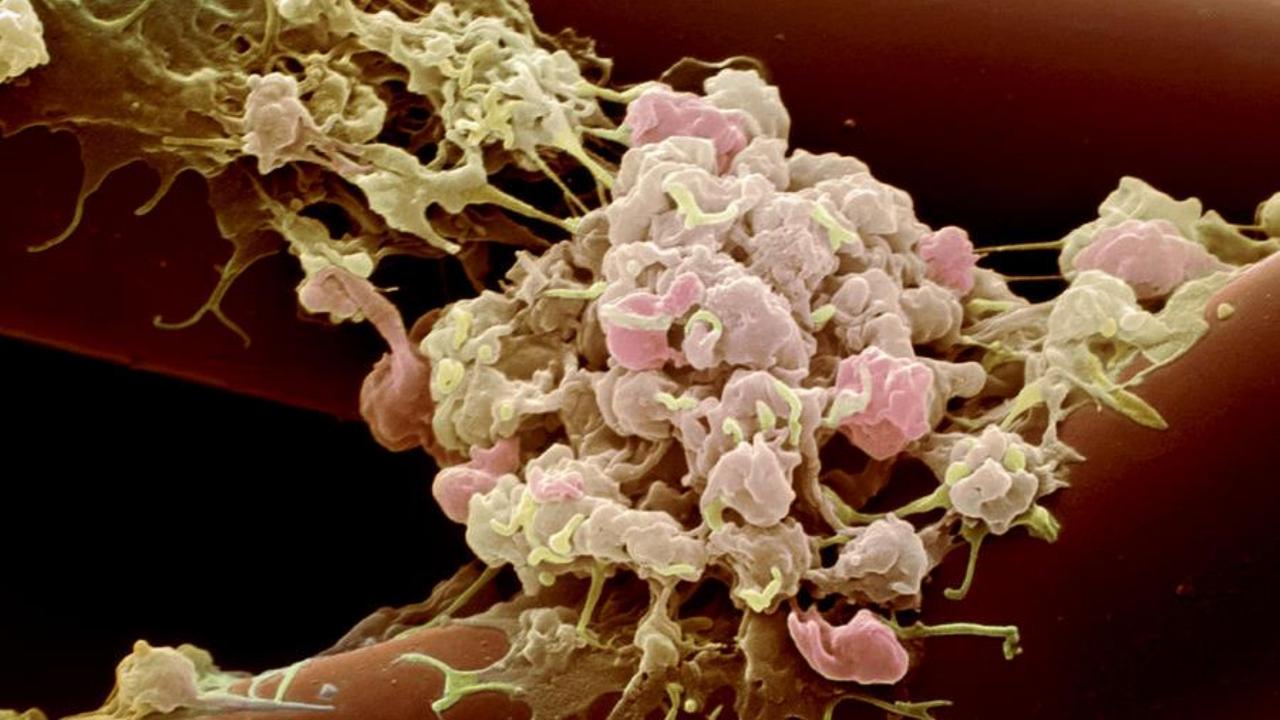
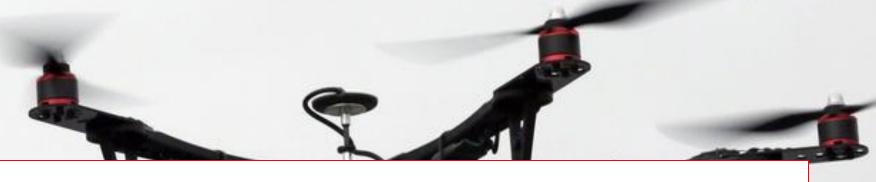


Platelet Indications


When are Platelets Needed?

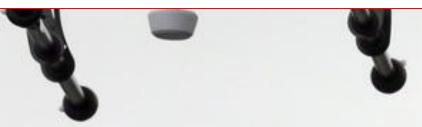
Paul Vulliamy MD PhD


Clinical Senior Lecturer, Centre for Trauma Sciences, Queen Mary University of London Consultant Trauma Surgeon, Royal London Hospital

What do we want platelets to do?

What do platelets do?

Platelets are **Damage Sensors**



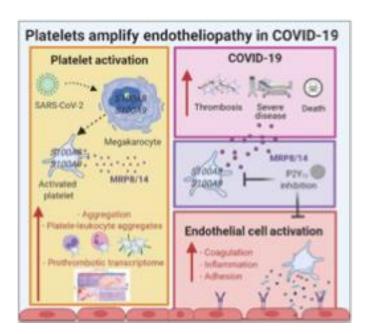
Very high numbers

Expendable - anucleate and mass produced

Extremely sensitive

Multiple effector functions

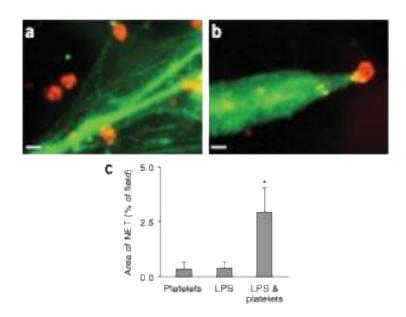
The diversity of platelet function


SCIENCE ADVANCES | RESEARCH ARTICLE

ARTICLES

CORONAVIRUS

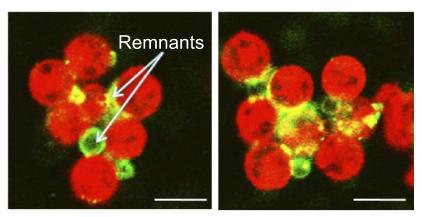
Platelets amplify endotheliopathy in COVID-19


Tessa J. Barrett¹*, MacIntosh Cornwell^{1,2}, Khrystyna Myndzar¹, Christina C. Rolling¹, Yuhe Xia¹, Kamelia Drenkova¹, Antoine Biebuyck¹, Alexander T. Fields³, Michael Tawil¹, Elliot Luttrell-Williams¹, Eugene Yuriditsky¹, Grace Smith⁴, Paolo Cotzia^{5,6}, Matthew D. Neal⁷, Lucy Z. Kornblith³, Stefania Pittaluga³, Amy V. Rapkiewicz⁸, Hannah M. Burgess⁹, Ian Mohr⁹, Kenneth A. Stapleford⁹, Deepak Voora¹⁰, Kelly Ruggles², Judith Hochman¹, Jeffrey S. Berger^{1,11}*

medicine

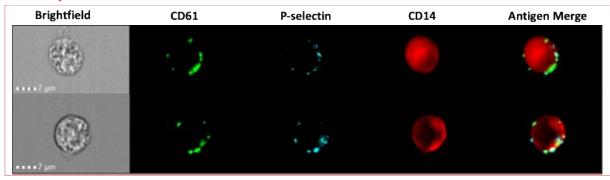
Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood

Stephen R Clark^{1,6}, Adrienne C Ma^{1,6}, Samantha A Tavener¹, Braedon McDonald¹, Zahra Goodarzi¹, Margaret M Kelly^{1,2}, Kamala D Patel^{1,3}, Subhadeep Chakrabarti^{1,3}, Erin McAvoy¹, Gary D Sinclair^{2,3}, Elizabeth M Keys², Emma Allen-Vercoe⁴, Rebekah DeVinney⁴, Christopher J Doig⁵, Francis H Y Green² & Paul Kubes¹

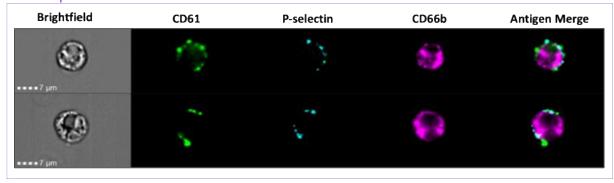

The diversity of platelet function

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

THROMBOSIS


Neutrophil macroaggregates promote widespread pulmonary thrombosis after gut ischemia

Yuping Yuan,^{1,2,3}* Imala Alwis,^{1,2,3}* Mike C. L. Wu,^{1,2,3}* Zane Kaplan,¹ Katrina Ashworth,¹ David Bark Jr.,¹ Alan Pham,⁴ James Mcfadyen,¹ Simone M. Schoenwaelder,^{1,2} Emma C. Josefsson,^{5,6} Benjamin T. Kile,^{5,6,7} Shaun P. Jackson^{1,2,3,8†}



Neutrophils perfused over PS⁺ remnant platelets

Monocytes

Neutrophils

The diversity of platelet function

A Hemostasis 2 Detection of vascular breach Response to endothelial alarms 0000 WP body Endothelium Platelet [contents (e.g VWF) Basement Activation membraneo Plasma protein Erythrocyte Lymph Platelet granule vessel Clot Serotonin formation

Sealing of

vascular breaches

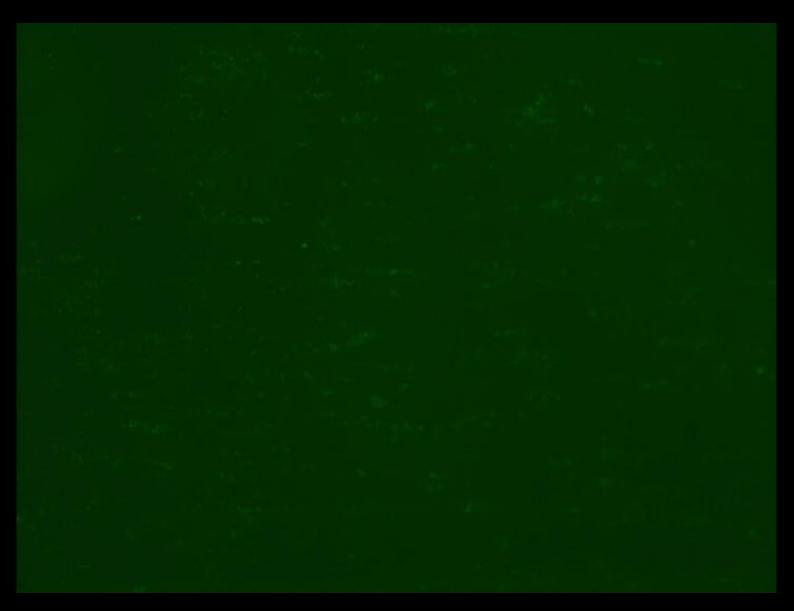
during leukocyte

transmigration

l Fibrin

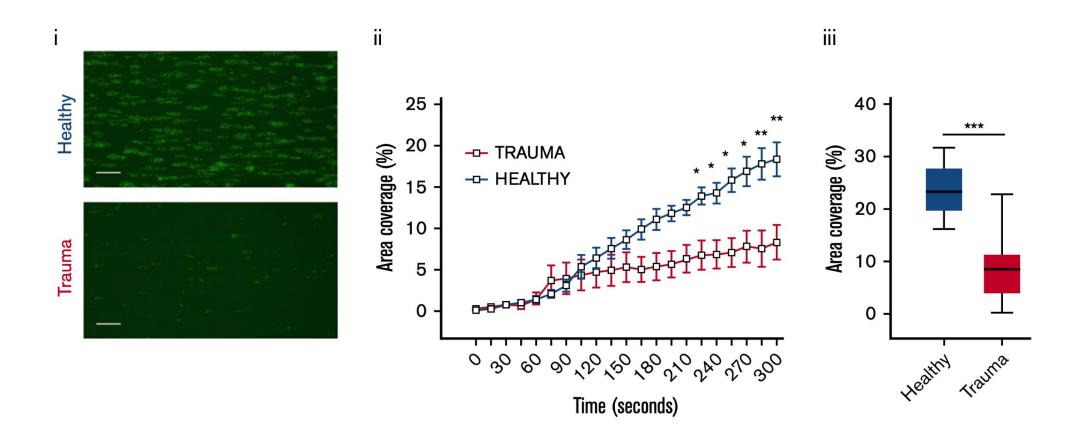
Regulation

permeability

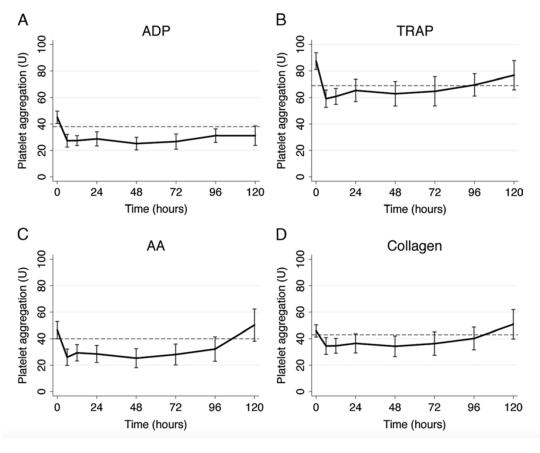

of vessel

6

Blood-lymph separation

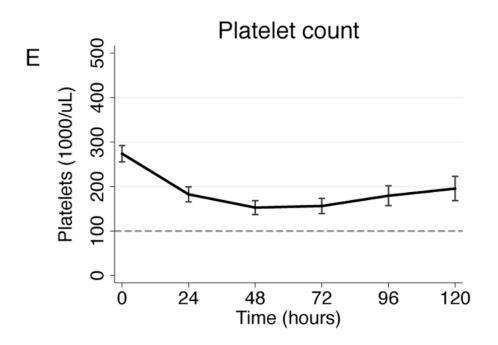

Healthy Volunteer

Trauma Hemorrhage


Diminished platelet adhesion to collagen in trauma-induced coagulopathy

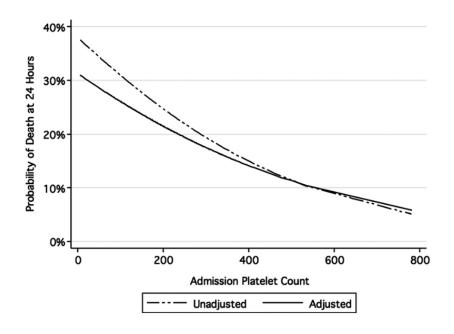
Impaired platelet aggregation in response to ex vivo stimulation

Characterization of platelet dysfunction after trauma


Matthew E. Kutcher, MD, Brittney J. Redick, BA, Ryan C. McCreery, BS, Ian M. Crane, BS, Molly D. Greenberg, BS, Leslie M. Cachola, BA, Mary F. Nelson, RN, MPA, and Mitchell Jay Cohen, MD, San Francisco, California

Platelet numbers are preserved – but lower counts are prognostic

Characterization of platelet dysfunction after trauma


Matthew E. Kutcher, MD, Brittney J. Redick, BA, Ryan C. McCreery, BS, Ian M. Crane, BS, Molly D. Greenberg, BS, Leslie M. Cachola, BA, Mary F. Nelson, RN, MPA, and Mitchell Jay Cohen, MD, San Francisco, California

ORIGINAL ARTICLE

A Normal Platelet Count May Not Be Enough: The Impact of Admission Platelet Count on Mortality and Transfusion in Severely Injured Trauma Patients

Lisa M. Brown, MD, MAS, Mariah S. Call, BS, M. Margaret Knudson, MD, Mitchell J. Cohen, MD, and the Trauma Outcomes Group

Platelet transfusions do not support aggregation during active hemorrhage

> J Trauma Acute Care Surg. 2017 Sep;83(3):388-397. doi: 10.1097/TA.0000000000001520.

Platelet transfusions reduce fibrinolysis but do not restore platelet function during trauma hemorrhage

Paul Vulliamy ¹, Scarlett Gillespie, Lewis S Gall, La

Affiliations + expand

PMID: 28452886 DOI: 10.1097/TA.00000000000

Observational Study > J Surg Res. 2017 Jun 15:214:154-161. doi: 10.1016/j.iss.2017.02.037.

Epub 2017 Feb 28.

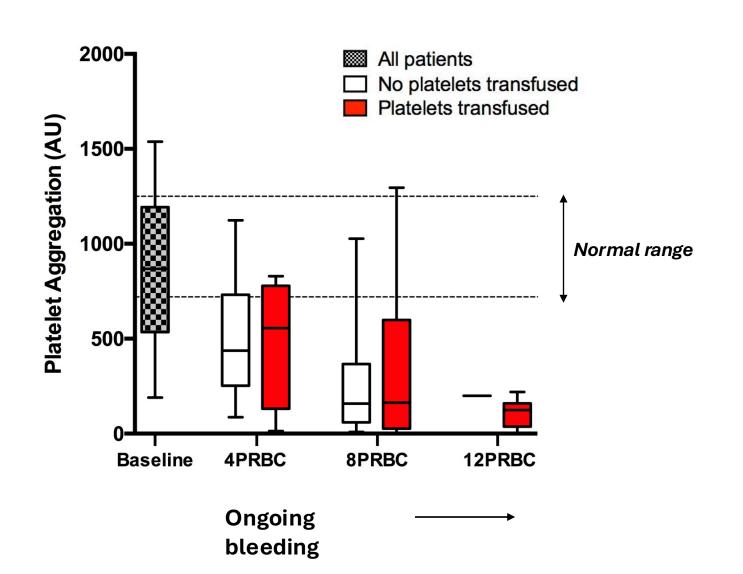
Impact of blood products on platelet function in patients with traumatic injuries: a translational study

Hanne Hee Henriksen ¹, Alexandra G Gran Bryan A Cotton ², Nena Matijevic ², Sisse Tzu-An Chen ², John B Holcomb ², Pär I J

Affiliations + expand

PMID: 28624038 DOI: 10.1016/j.jss.2017.(

> J Trauma Acute Care Surg. 2019 Nov;87(5):1042-1051. doi: 10.1097/TA.000000000002459.


It's About Time: Transfusion effects on postinjury platelet aggregation over time

Lucy Z Kornblith 1, Anna Decker, Amanda S Conroy, Carolyn M Hendrickson, Alexander T Fields, Anamaria J Robles, Rachael A Callcut, Mitchell J Cohen

Affiliations + expand

PMID: 31389915 PMCID: PMC6814558 DOI: 10.1097/TA.000000000002459

Platelet transfusions do not support aggregation during active hemorrhage

Is something in the blood 'switching off' platelets?

SHOCK, Vol. 55, No. 2, pp. 189-197, 2021

GOOD PLATELETS GONE BAD: THE EFFECTS OF TRAUMA PATIENT PLASMA ON HEALTHY PLATELET AGGREGATION

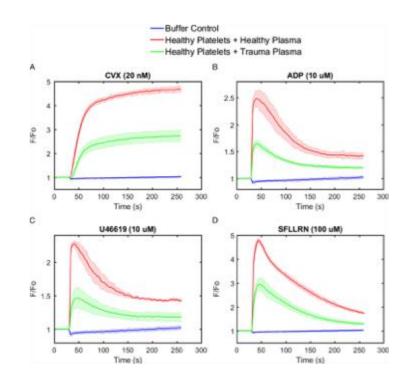
Alexander T. Fields, Zachary A. Matthay, Brenda Nunez-Garcia, Ellicott C. Matthay, Roland J. Bainton, Rachael A. Callcut, and Lucy Z. Kornblith

"Department of Surgery, University of California, San Francisco; †Department of Epidemiology and Biostatistics, University of California, San Francisco; and †Department of Anesthesia and Perioperative Care, University of California, San Francisco

Received: 25 June 2021 | Accepted: 9 May 2022

DOI: 10.1111/jth.15763

ORIGINAL ARTICLE


Importance of catecholamine signaling in the development of platelet exhaustion after traumatic injury

Zachary A. Matthay¹ | Alexander T. Fields¹ | Brenda Nunez-Garcia¹ | John J. Park¹ | Chayse Jones² | Aleksandra Leligdowicz² | Carolyn M. Hendrickson² | Rachael A. Callcut³ | Michael A. Matthay² | Lucy Z. Kornblith¹ |

ORIGINAL ARTICLE

Platelet dysfunction during trauma involves diverse signaling pathways and an inhibitory activity in patient-derived plasma

Christopher C. Verni, MS, Antonio Davila, Jr., PhD, Steve Balian, MD, Carrie A. Sims, MD, PhD, and Scott L. Diamond, PhD, Philadelphia, Pennsylvania

Is something in the blood 'switching off' platelets?

SHOCK, Vol. 55, No. 2, pp. 189-197, 2021

GOOD PLATELETS GONE BAD: THE EFFECTS OF TRAUMA PATIENT PLASMA ON HEALTHY PLATELET AGGREGATION

Alexander T. Fields, Zachary A. Matthay, Brenda Nunez-Garcia, Ellicott C. Matthay, Roland J. Bainton, Rachael A. Callcut, and Lucy Z. Kornblith'

*Department of Surgery, University of California, San Francisco; †Department of Epidemiology and Biostatistics, University of California, San Francisco; and [‡]Department of Anesthesia and Perioperative Care, University of California, San Francisco

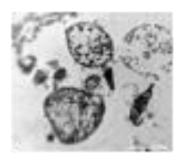
Received: 25 June 2021 | Accepted: 9 May 2022 DOI: 10.1111/lth.15763

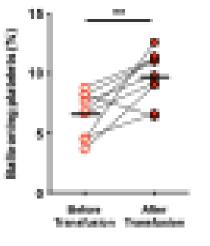
ORIGINAL ARTICLE

ith

Importance of catecholamine signaling in the development of platelet exhaustion after traumatic injury

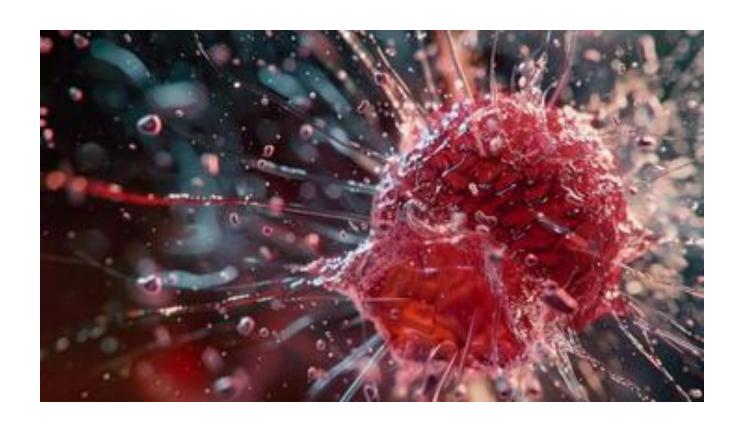
Zachary A. Matthay 1 9 | Alexander T. Fields 1 | Brenda Nunez-Garcia 9 | John J. Park 1 9 Chayse Jones² | Aleksandra Leligdowicz² | Carolyn M. Hendrickson² | Rachael A. Callcut³ | Michael A. Matthay² | Lucy Z. Kornblith¹ | y

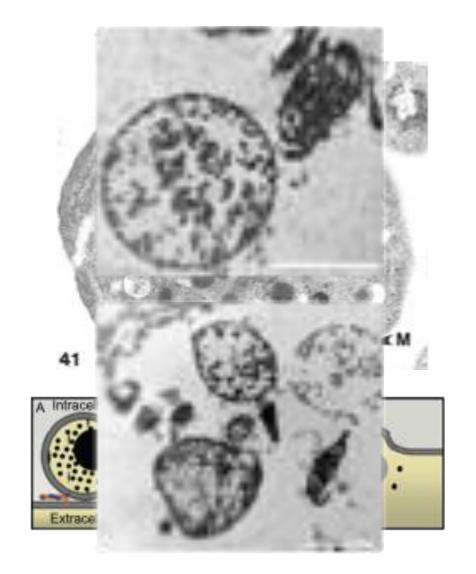


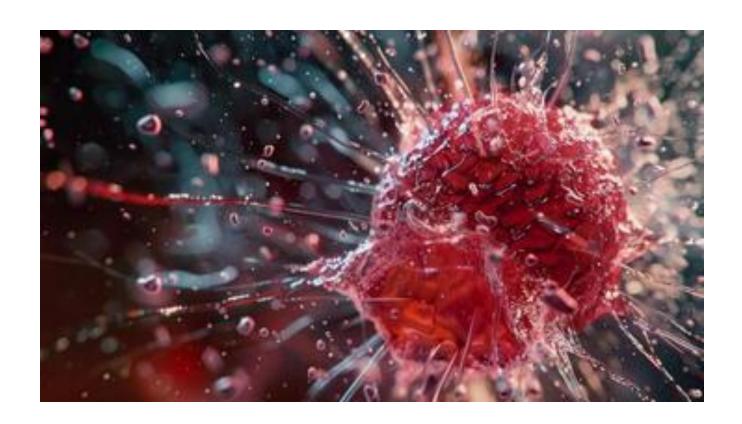

Histone H4 induces platelet ballooning and microparticle release during trauma hemorrhage

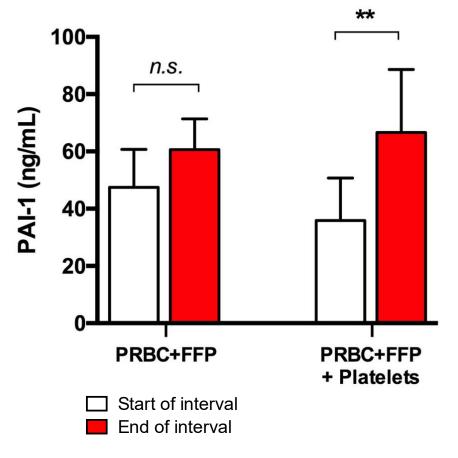
Paul Vulliamy^{a,1,2}, Scarlett Gillespie^{a,1}, Paul C. Armstrong^b, Harriet E. Allan^b, Timothy D. Warner^b, and Karim Brohi^{a,2}

*Centre for Trauma Sciences, Bfizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, United Kingdom; and ^bCentre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, United Kingdom








Are transfused platelets doing something else??

Are transfused platelets doing something else??

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

COAGULATION

Impaired hemostatic activity of healthy transfused platelets in inherited and acquired platelet disorders: Mechanisms and implications

Robert H. Lee^{1,2}*, Raymond Piatt¹, Ankita Dhenge^{1,2}, María L. Lozano³, Verónica Palma-Barqueros³, José Rivera³, Wolfgang Bergmeier^{1,2}*

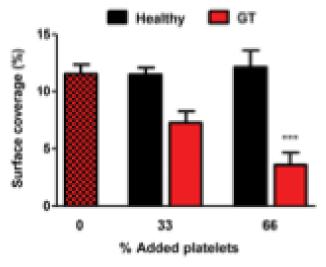
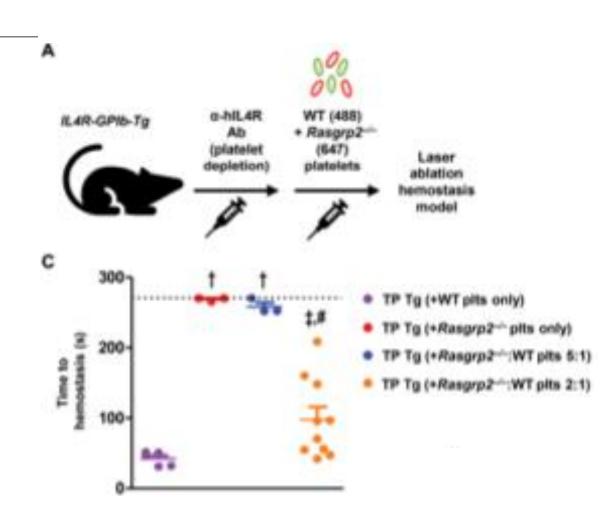
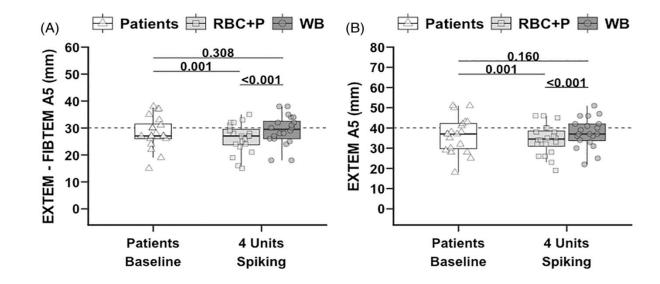



Fig. 5. GT patient platelets interfere with the function of healthy donor platelets.

Are platelets in whole blood different?


Comparative Study > Transfusion. 2025 Mar;65(3):624-636. doi: 10.1111/trf.18143. Epub 2025 Feb 5.

Comparison of whole blood versus red blood cells and plasma to correct trauma-induced coagulopathy ex vivo

Andrea Rossetto ^{1 2}, Paul Vulliamy ^{1 2}, Sian Huish ³, Rebecca Cardigan ^{3 4}, Laura Green ^{1 2 5}, Ross Davenport ^{1 2}

Affiliations + expand

PMID: 39908221 PMCID: PMC11925139 DOI: 10.1111/trf.18143

Clinical Evidence

Research

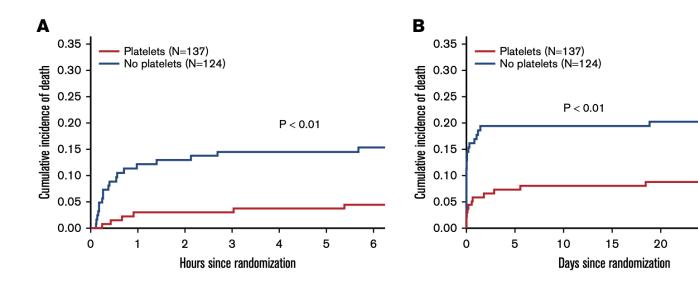
Original Investigation

Transfusion of Plasma, Platelets, and Red Blood Cells in a 1:1:1 vs a 1:1:2 Ratio and Mortality in Patients With Severe Trauma The PROPPR Randomized Clinical Trial

John B. Holcomb, MD; Barbara C. Tilley, PhD; Sarah Baraniuk, PhD; Erin E. Fox, PhD; Charles E. Wade, PhD; Jeanette M. Podbielski, RN; Deborah J. del Junco, PhD; Karen J. Brasel, MD, MPH; Eileen M. Bulger, MD; Rachael A. Callcut, MD, MSPH; Mitchell Jay Cohen, MD; Bryan A. Cotton, MD, MPH; Timothy C. Fabian, MD; Kenji Inaba, MD; Jeffrey D. Kerby, MD, PhD; Peter Muskat, MD; Terence O'Keeffe, MBChB, MSPH; Sandro Rizoli, MD, PhD; Bryce R. H. Robinson, MD; Thomas M. Scalea, MD; Martin A. Schreiber, MS; Deborah M. Stein, MD; Jordan A. Weinberg, MD; Jeannie L. Callum, MD; John R. Hess, MD, MPH; Nena Matijevic, PhD; Christopher N. Miller, MD; Jean-Francois Pittet, MD; David B. Hoyt, MD; Gail D. Pearson, MD, ScD; Brian Leroux, PhD; Gerald van Belle, PhD; for the PROPPR Study Group

Clinical Evidence

REGULAR ARTICLE


• blood advances

25

30

Platelet transfusions improve hemostasis and survival in a substudy of the prospective, randomized PROPPR trial

Jessica C. Cardenas,^{1,2} Xu Zhang,³ Erin E. Fox,¹⁻³ Bryan A. Cotton,¹⁻³ John R. Hess,⁴ Martin A. Schreiber,⁵ Charles E. Wade,¹⁻³ and John B. Holcomb,¹⁻³ on behalf of the PROPPR Study Group

What do the guidelines say?

Rossaint et al. Critical Care (2023) 27:80 https://doi.org/10.1186/s13054-023-04327-7 Critical Care

GUIDELINES Open Access

The European guideline on management of major bleeding and coagulopathy following trauma: sixth edition

Rolf Rossaint^{1*}, Arash Afshari², Bertil Bouillon³, Vladimir Cerny^{4,5}, Diana Cimpoesu⁶, Nicola Curry^{7,8}, Jacques Duranteau⁹, Daniela Filipescu¹⁰, Oliver Grottke¹, Lars Grønlykke¹¹, Anatole Harrois⁹, Beverley J. Hunt¹², Alexander Kaserer¹³, Radko Komadina¹⁴, Mikkel Herold Madsen², Marc Maegele¹⁵, Lidia Mora¹⁶, Louis Riddez¹⁷, Carolina S. Romero¹⁸, Charles-Marc Samama¹⁹, Jean-Louis Vincent²⁰, Sebastian Wiberg¹¹ and Donat R. Spahn¹³

Keep platelets >50x10⁹/L (or >100x10⁹/L if coexisting TBI) (Grade 2B)

Early and repeated monitoring of hemostasis (Grade 1C)

Avoid routine use of point-of-care platelet function testing (Grade 1C)

Give a high platelet:pRBC ratio (Grade 2B)

What do the guidelines say?

Rossaint et al. Critical Care (2023) 27:80 https://doi.org/10.1186/s13054-023-04327-7 Critical Care

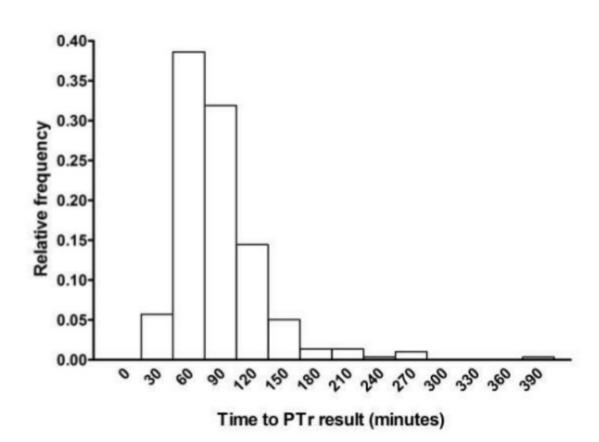
GUIDELINES Open Access

The European guideline on management of major bleeding and coagulopathy following trauma: sixth edition

Rolf Rossaint^{1*}, Arash Afshari², Bertil Bouillon³, Vladimir Cerny^{4,5}, Diana Cimpoesu⁶, Nicola Curry^{7,8}, Jacques Duranteau⁹, Daniela Filipescu¹⁰, Oliver Grottke¹, Lars Grønlykke¹¹, Anatole Harrois⁹, Beverley J. Hunt¹², Alexander Kaserer¹³, Radko Komadina¹⁴, Mikkel Herold Madsen², Marc Maegele¹⁵, Lidia Mora¹⁶, Louis Riddez¹⁷, Carolina S. Romero¹⁸, Charles-Marc Samama¹⁹, Jean-Louis Vincent²⁰, Sebastian Wiberg¹¹ and Donat R. Spahn¹³

Keep platelets >50x10⁹/L (or >100x10⁹/L if coexisting TBI) (*Grade 2B*)

Early and repeated monitoring of hemostasis (Grade 1C)


Avoid routine use of point-of-care platelet function testing (Grade 1C)

Give a high platelet:pRBC ratio (Grade 2B)

Early significant thrombocytopenia is rare

Platelet counts take time...

What do the guidelines say?

Rossaint et al. Critical Care (2023) 27:80 https://doi.org/10.1186/s13054-023-04327-7 Critical Care

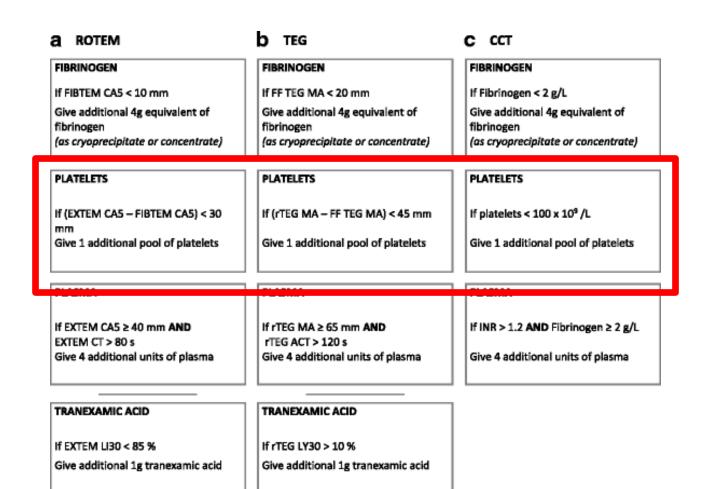
GUIDELINES Open Access

The European guideline on management of major bleeding and coagulopathy following trauma: sixth edition

Rolf Rossaint^{1*}, Arash Afshari², Bertil Bouillon³, Vladimir Cerny^{4,5}, Diana Cimpoesu⁶, Nicola Curry^{7,8}, Jacques Duranteau⁹, Daniela Filipescu¹⁰, Oliver Grottke¹, Lars Grønlykke¹¹, Anatole Harrois⁹, Beverley J. Hunt¹², Alexander Kaserer¹³, Radko Komadina¹⁴, Mikkel Herold Madsen², Marc Maegele¹⁵, Lidia Mora¹⁶, Louis Riddez¹⁷, Carolina S. Romero¹⁸, Charles-Marc Samama¹⁹, Jean-Louis Vincent²⁰, Sebastian Wiberg¹¹ and Donat R. Spahn¹³

Keep platelets >50x10⁹/L (or >100x10⁹/L if coexisting TBI) (Grade 2B)

Early and repeated monitoring of hemostasis (Grade 1C)


Avoid routine use of point-of-care platelet function testing (Grade 1C)

Give a high platelet:pRBC ratio (Grade 2B)

Tools to guide platelet transfusion

What do the guidelines say?

Rossaint et al. Critical Care (2023) 27:80 https://doi.org/10.1186/s13054-023-04327-7 Critical Care

GUIDELINES Open Access

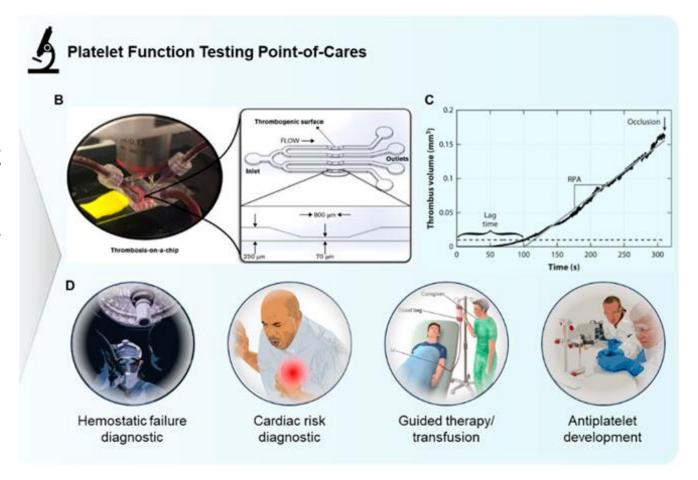
The European guideline on management of major bleeding and coagulopathy following trauma: sixth edition

Rolf Rossaint^{1*}, Arash Afshari², Bertil Bouillon³, Vladimir Cerny^{4,5}, Diana Cimpoesu⁶, Nicola Curry^{7,8}, Jacques Duranteau⁹, Daniela Filipescu¹⁰, Oliver Grottke¹, Lars Grønlykke¹¹, Anatole Harrois⁹, Beverley J. Hunt¹², Alexander Kaserer¹³, Radko Komadina¹⁴, Mikkel Herold Madsen², Marc Maegele¹⁵, Lidia Mora¹⁶, Louis Riddez¹⁷, Carolina S. Romero¹⁸, Charles-Marc Samama¹⁹, Jean-Louis Vincent²⁰, Sebastian Wiberg¹¹ and Donat R. Spahn¹³

Keep platelets >50x10⁹/L (or >100x10⁹/L if coexisting TBI) (Grade 2B)

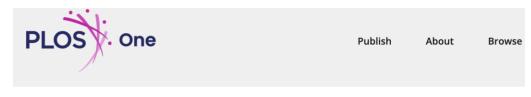
Early and repeated monitoring of hemostasis (Grade 1C)

Avoid routine use of point-of-care platelet function testing (*Grade 1C*)


Give a high platelet:pRBC ratio (Grade 2B)

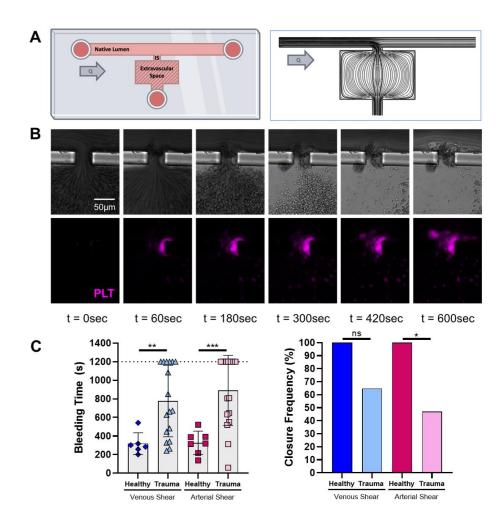
Novel tools - Microfluidics

Advancing microfluidic point-of-care platelet function tests: opportunities and challenges from bench to market


Minki Kang (10), Christopher A. Bresette (10) and David N. Ku*

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States

Novel tools - Microfluidics



■ OPEN ACCESS PEER-REVIEWED RESEARCH ARTICLE

Trauma patients have reduced *ex vivo* flow-dependent platelet hemostatic capacity in a microfluidic model of vessel injury

Kimberly A. Thomas , Rassam M. G. Rassam , Ronit Kar, Devin M. Dishong, Katelin C. Rahn, Ricardo Fonseca, Melissa Canas, Jose Aldana, Hussain Afzal, Kelly Bochicchio, Matthew D. Neal, Grant V. Bochicchio, Philip C. Spinella, Susan M. Shea

Published: July 10, 2024 • https://doi.org/10.1371/journal.pone.0304231

What do the guidelines say?

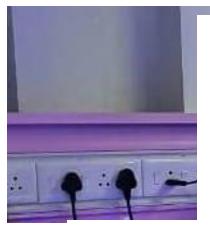
Rossaint et al. Critical Care (2023) 27:80 https://doi.org/10.1186/s13054-023-04327-7 Critical Care

GUIDELINES Open Access

The European guideline on management of major bleeding and coagulopathy following trauma: sixth edition

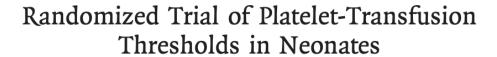
Rolf Rossaint^{1*}, Arash Afshari², Bertil Bouillon³, Vladimir Cerny^{4,5}, Diana Cimpoesu⁶, Nicola Curry^{7,8}, Jacques Duranteau⁹, Daniela Filipescu¹⁰, Oliver Grottke¹, Lars Grønlykke¹¹, Anatole Harrois⁹, Beverley J. Hunt¹², Alexander Kaserer¹³, Radko Komadina¹⁴, Mikkel Herold Madsen², Marc Maegele¹⁵, Lidia Mora¹⁶, Louis Riddez¹⁷, Carolina S. Romero¹⁸, Charles-Marc Samama¹⁹, Jean-Louis Vincent²⁰, Sebastian Wiberg¹¹ and Donat R. Spahn¹³

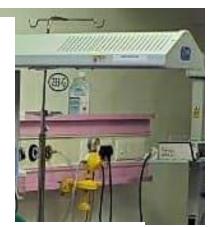
Keep platelets >50x10⁹/L (or >100x10⁹/L if coexisting TBI) (Grade 2B)


Early and repeated monitoring of hemostasis (Grade 1C)

Avoid routine use of point-of-care platelet function testing (Grade 1C)

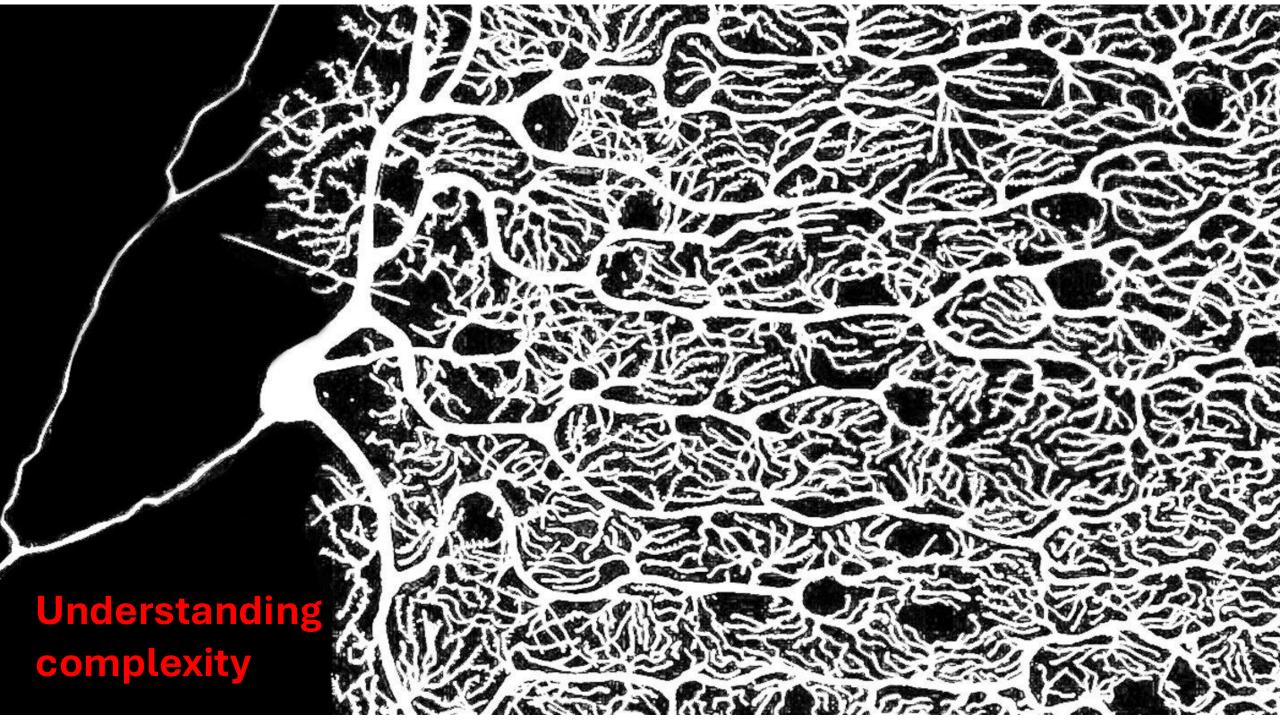
Give a high platelet:pRBC ratio (Grade 2B)




When are platelets NOT indicated?

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE



Outcome	Low-Threshold Group (N=331)	High-Threshold Group (N=329)	Odds Ratio or Hazard Ratio (95% CI)*
Primary outcome			
Death or major bleeding episode through trial day 28 — no./total no. (%)	61/329 (19)	85/324 (26)	OR, 1.57 (1.06-2.32)†
Secondary outcomes‡			
Death through trial day 28 — no./total no. (%)	33/330 (10)	48/326 (15)	OR, 1.56 (0.95-2.55)
At least one major bleeding episode through trial day 28 — no./total no. (%)	35/330 (11)	45/328 (14)	HR, 1.32 (1.00–1.74)

When are platelets NOT indicated?

	. •		l
Δ	rti	c	P

	Intention-to-	Intention-to-treat population		As-treated population		
	Platelet transfusion group (n=97)	Standard care group (n=93)	Odds ratio (95% CI)	Platelet transfusion group (n=95)	Standard care group (n=95)	Odds ratio (95% CI)
Any SAE	41 (42%)	27 (29%)	1.79 (0.98–3.27)	40 (42%)	28 (29%)	1.74 (0.96–3.17)
Any fatal SAE	24 (25%)	15 (16%)	1.71 (0.83-3.51)	23 (24%)	16 (17%)	1.58 (0.77-3.22)
SAE due to ICH	24 (25%)	13 (14%)	2.02 (0.96-4.27)	24 (25%)	13 (14%)	2.13 (1.01-4.50)
ICH enlargement	15 (15%)	13 (14%)	1.13 (0.50-2.52)	15 (16%)	13 (14%)	1.18 (0.53-2.64)
Brain oedema	5 (5%)	0	11-12 (0-61-204-97)	5 (5%)	0	11-61 (0-63-212-94)
Brain herniation	2 (2%)	0	4.90 (0.23-103.33)	2 (2%)	0	5.11 (0.24–107.83)
Intraventricular extension	6 (6%)	0	13-28 (0-74-239-24)	6 (6%)	0	13.87 (0.77–249.82)
Hydrocephalus	3 (3%)	2 (2%)	1.45 (0.24-8.89)	4 (4%)	1 (1%)	4.13 (0.45-37.67)
SAE due to thromboembolism	4 (4%)	1 (1%)	3.96 (0.43-36.08)	4 (4%)	1 (1%)	4.13 (0.45-37.67)
Ischaemic stroke	1 (1%)	0	2.91 (0.12-72.26)	1 (1%)	0	3.03 (0.12-75.37)
Myocardial infarction	1 (1%)	1 (1%)	0.96 (0.06-15.55)	1 (1%)	1 (1%)	1.00 (0.06–16.23)
Extremity embolism	2 (2%)	0	4.90 (0.23-103.34)	2 (2%)	0	5.11 (0.24–107.81)
Pulmonary embolism	1 (1%)	0	2.91 (0.12-72.26)	1 (1%)	0	3.03 (0.12-75.37)

