Cold Stored Platelet Trials in Hemorrhagic Shock

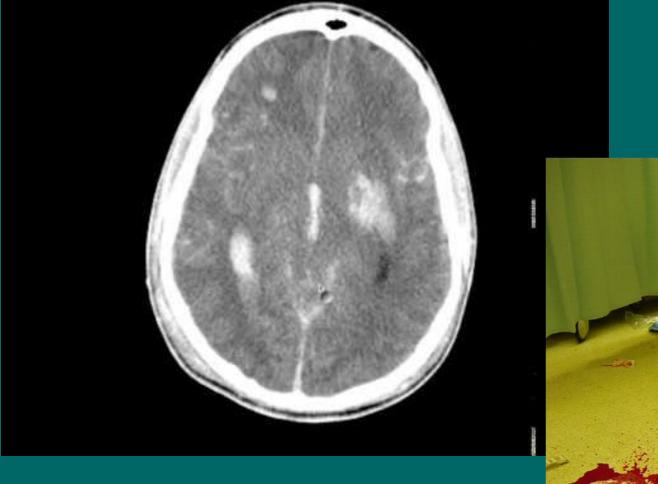
The CriSP-HS

<u>Multi-center and Single-center, Prospective, Randomized</u> <u>Clinical Trials</u>

J. Sperry, F. Guyette, S. Wisniewski, B. Rosario-Rivera, M. Kutcher, L. Kornblith, B. Cotton, C. Wilson, K. Inaba, E Zadorozny, L. Vincent, A. Harner, E. Love, M. Neal, D. Okonkwo, A. Puccio, M. Yazer, J. Luther and CriSP study groups

THOR 2024 Miami, FL OCT 6th-9th

FS


Disclosures

No conflicts to report.

- FUNDING
- This research is supported by DoD Contract No. W81XWH-16-D-0024, Task Order W81XWH-19-F-0494.

 Any opinions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Department of Defense.

Traumatic Injury Morbidity/Mortality

PROPPR and Platelets in HS

Research

Original Investigation

Transfusion of Plasma, Platelets, and Red Blood Cells in a 1:1:1 vs a 1:1:2 Ratio and Mortality in Patients With Severe Trauma The PROPPR Randomized Clinical Trial

REGULAR ARTICLE

S blood advances

Platelet transfusions improve hemostasis and survival in a substudy of the prospective, randomized PROPPR trial

Jessica C. Cardenas,^{1,2} Xu Zhang,³ Erin E. Fox,¹⁻³ Bryan A. Cotton,¹⁻³ John R. Hess,⁴ Martin A. Schreiber,⁵ Charles E. Wade,¹⁻³ and John B. Holcomb,¹⁻³ on behalf of the PROPPR Study Group

¹Division of Acute Care Surgery, Department of Surgery, McGovern School of Medicine, ²Center for Translational Injury Research, and ³Center for Translational and Clinical Studies, University of Texas Health Science Center, Houston, TX; ⁴Department of Laboratory Medicine, Harborview Medical Center, University of Washington, Seattle, WA; and ⁵Division of Trauma, Critical Care and Acute Care Surgery, Department of Surgery, Oregon Health and Science University, Portland, OR

Shelf Life and Supply-Austere Environments

Cold vs RT platelets

Reduced Infectious Risk

5 days to 14 days

 Received: 50 June 2023
 Revised: 14 September 2023
 Accepted: 21 September 2023

 DOI: 10.1111/0f.17572
 TRANSFUSION

 How do I manage a blood product shortage?

 Richard Gammon¹ ()
 | Joanne Becker² | Tracy Cameron³ | Quentin Eichbaum⁴ | Aikaj Jindal⁵ | Divjot Singh Lamba⁶ () | Shaughn Nalezinski⁷ ()

Yvette C. Tanhehco¹¹

Alternative Procedures for the Manufacture of Cold-Stored Platelets Intended for the Treatment of Active Bleeding when Conventional Platelets Are Not Available or Their Use Is Not Practical

Guidance for Industry

This guidance is for immediate implementation.

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JULY 26, 2018

Prehospital Plasma during Air Medical Transport in Trau Patients at Risk for Hemorrhagic Shock

J.L. Sperry, F.X. Guyette, J.B. Brown, M.H. Yazer, D.J. Triulzi, B.J. Early-Young, P.W. Adams, B.J. Daley, R.S. B.G. Harbrecht, J.A. Claridge, H.A. Phelan, W.R. Witham, A.T. Putnam, T.M. Duane, L.H. Alarcon, C.W. C B.S. Zuckerbraun, M.D. Neal, M.R. Rosengart, R.M. Forsythe, T.R. Billiar, D.M. Yealy, A.B. Peitzma and M.S. Zenati, for the PAMPer Study Group*

Research

VOL. 379 NO. 4

JAMA Surgery | Original Investigation

Tranexamic Acid During Prehospital Transport in Patients at Risk for Hemorrhage After Injury A Double-blind, Placebo-Controlled, Randomized Clinical Trial

Francis X. Guyette, MD, MPH; Joshua B. Brown, MD, MSc; Mazen S. Zenati, MD, PhD; Barbara J. Early-Young, BSN; Peter W. Adams, BS; Brian J. Eastridge, MD; Raminder Nirula, MD, MPH; Gary A. Vercruysse, MD; Terence O'Keeffe, MD; Bellal Joseph, MD; Louis H. Alarcon, MD; Clifton W. Callaway, MD, PhD; Brian S. Zuckerbraun, MD; Matthew D. Neal, MD; Raquel M. Forsythe, MD; Matthew R. Rosengart, MD, MPH; Timothy R. Billiar, MD; Donald M. Yealy, MD; Andrew B. Peltzman, MD; Jason L. Sperry, MD, MPH; and the STAAMP Study Group

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Prehospital Tranexamic Acid for Severe Trauma

JAMA | Original Investigation

Effect of Out-of-Hospital Tranexamic Acid vs Placebo on 6-Month Functional Neurologic Outcomes in Patients With Moderate or Severe Traumatic Brain Injury

Susan E. Rowell, MD, MBA; Eric N. Meler, MS; Barbara McKnight, PhD; Delores Kannas, RN, MS, MHA; Susanne May, PhD; Kellie Sheehan, RN; Eileen M. Bulger, MD; Ahamed H. Idris, MD; Jim Christenson, MD; Laurie J. Morrison, MD; Ralph J. Frascone, MD; Patrick L. Bosarge, MD; M. Riccardo Colelia, DO, MPH; Jay Johannigman, MD; Bryan A. Cotton, MD; Jeannie Callum, MD; Jason McMullan, MD; David J. Dries, MD;

D; Martin D. Zielinski, MD; MD, MPH; Lauren Klein, MD, MS; Ilams, RN; Audrey Hendrickson, MPH; n.A. Schreiber, MD

The PATCH-Traur

2021 AAST QUICK SHOT

Research

Prehospital low titer group O whole blood is feasible and safe: Results of a prospective randomized pilot trial

Frank X. Guyette, MD, MPH, Mazen Zenati, MD, PhD, Darrell J. Triulzi, MD, Mark H. Yazer, MD, Hunter Skroczky, BS, Barbara J. Early, BSN, Peter W. Adams, BS, Joshua B. Brown, MD, MCS, Louis Alarcon, MD, Matthew D. Neal, MD, Raquel M. Forsythe, MD, Brian S. Zuckerbraun, MD,
Andrew B. Peitzman, MD, Timothy R. Billiar, MD, and Jason L. Sperry, MD, MPH, Pittsburgh, Pennsylvania

Cold Better-Robust

REVIEW

The effect of platelet storage temperature on haemostatic, immune, and endothelial function: potential for personalised medicine

bih research paper

Platelets stored at 4°C contribute to superior clot properties compared to current standard-of-care through fibrin-crosslinking

SHOCK, Vol. 41, Supplement 1, pp. 54–61, 2014

HEMOSTATIC FUNCTION OF APHERESIS PLATELETS STORED AT 4°C AND 22°C

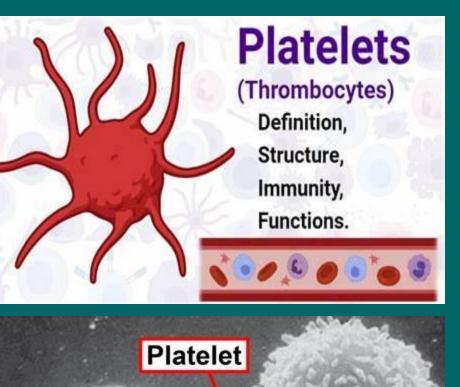
Kristin M. Reddoch,* Heather F. Pidcoke,[†] Robbie K. Montgomery,[†] Chriselda G. Fedyk,[†] James K. Aden,[†] Anand K. Ramasubramanian,* SHOCK, Vol. 41, Supplement 1, pp. 5-53, 2014

Review Article

REFRIGERATED PLATELETS FOR THE TREATMENT OF ACUTE BLEEDING: A REVIEW OF THE LITERATURE AND REEXAMINATION OF CURRENT STANDARDS

Heather F. Pidcoke.* Philip C. Spinella.[†] Anand K. Ramasubramanian.[‡]

SUPPLEMENT ARTICLE


Cold-stored platelets have better preserved contractile function in comparison with room temperature-stored platelets over 21 days

Prajede N. Meinland, Meinland M. Advisor D. M. 11-2 Xiac <u>BLOOD COMPONENTS</u>

TRANSFUSION

Asw

And Cold storage of platelets in platelet additive solution maintains mitochondrial integrity by limiting initiation of apoptosis-mediated pathways

No. Con Sea

VHITE BLOOD (

RED BLOOD CELL

CriSP-HS Trial Study Design

Open label, Phase 2, Multi-center, Randomized trial designed to determine the efficacy and safety of incorporating early CSPs into early trauma resuscitation vs. standard of care resuscitation in patients at risk of hemorrhagic shock.

- 3-year planned enrollment
- 5 level 1-trauma centers
- At risk of hemorrhagic shock
- University of Mississippi; University of Texas Houston; University of California, San Francisco; Baylor College of Medicine; University of Southern California, LA

CriSP-HS Trial Eligibility Criteria

Assessment of Blood Consumption Score (ABC): SBP <90mmHg; Penetrating mechanism; Positive FAST; HR >120 <u>AND</u>

Hemorrhage control procedure in 60 minutes (OR/IR)

• Exclusion:

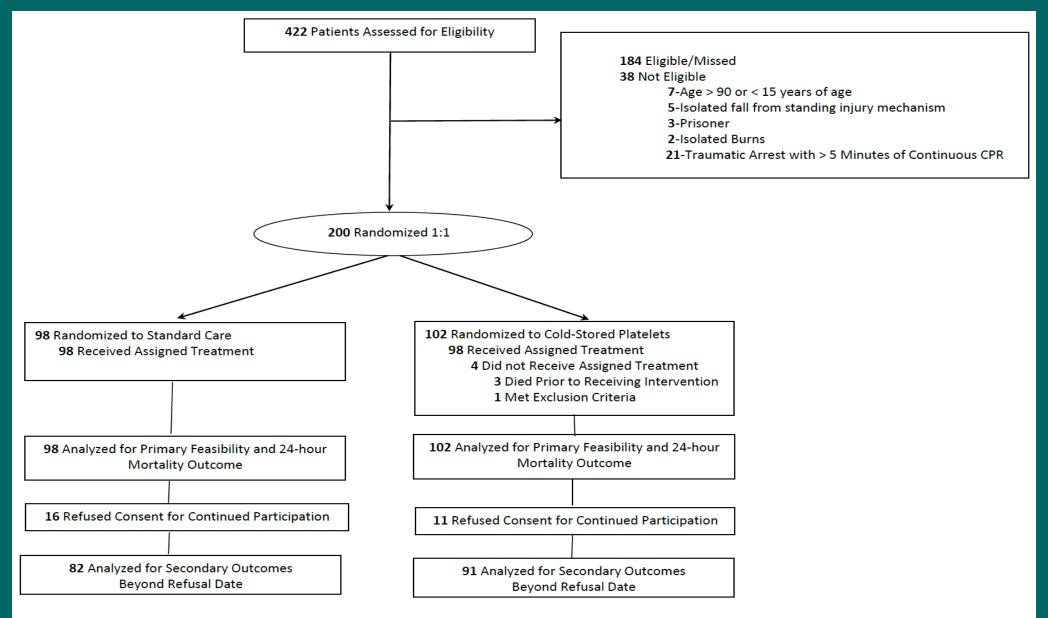
- Wearing "NO CRISP" opt-out bracelet
- Age > 90 or <15 years of age
- Isolated fall; known prisoner; known pregnancy; Isolated burns
- Traumatic arrest with >5 min of CPR without return of vital signs
- Brain matter exposed or penetrating brain injury (GSW)
- Isolated drowning or hanging victims
- Objection to study voiced by subject or family member at the scene

CriSP-HS Trial

Intervention / Comparison Arms

- OPEN LABEL
 - CSP arm
- Single apheresis unit cold stored platelets (1-6 °C) stored local refrigerator
 - Out to 14 days from donation
 - Transfused as soon as feasible
 - Concomitant standard site resuscitation
 - Standard Care arm
- Standard care prehospital resuscitation
 - No requirement for platelet transfusion

- 1:1 ratio random allocation sequence to either CSP arm or standard care arm
- Variable block sizes of 4 to 6; computer random-number generator.
- Assignment envelopes in the trauma bay or proximity to ED
- Study team; randomization cards; sealed envelopes; patient level; in real-time.
- Arm assignment was concealed to outcome assessors



Primary Outcome: Feasibility

Safety / Efficacy: 24-hour mortality

Additional Secondary Outcomes: Mortality time points; death from hemorrhage; time to hemostasis; ARDS; thromboembolic events; coagulation measures, transfusion requirements

CriSP-HS Trial-Enrollment

CriSP-HS Trial-Cohort / Randomization

Enrolled Cohort Characteristics

Age- 34 ± 13 years

Sex-85% male

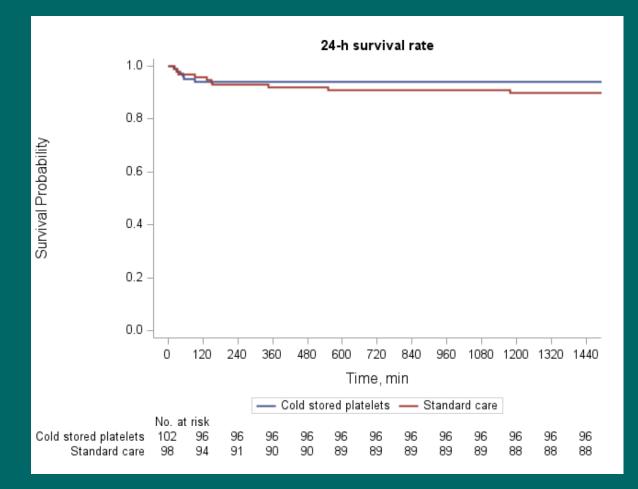
ISS- median 17 [9-28]

Mechanism- 78.5% penetrating

24-hour mortality- 8%

30-day mortality

	n/N (%)			
Characteristics	Standard care (N = 98)	Cold stored platelets (N = 102)		
Age [mean (SD)]	35.3 (14.4)	34.4 (13.5)		
Male sex	78/98 (80)	85/102 (83)		
Race				
White	18/98 (18)	28/102 (28)		
Black	51/98 (52)	47/102 (47)		
Other	13/98 (13)	13/102 (13)		
Hispanic	13/98 (13)	20/102 (20)		
SBP [median (IQR)] (mm Hg	9			
Initial	108.5 (84.5, 129.5)	99 (83, 140)		
Highest	122 (102, 144)	127 (98, 148)		
Lowest	93.5 (78, 117.5)	90 (78, 127)		
HR [median (IQR)] (beats/mi				
Initial	106 (86, 123)	112 (88, 130.5)		
Highest	111.5 (93, 130)	116 (96.5, 135)		
Lowest	95 (81.5, 117)	101 (75, 123)		
Transport mode				
Ground EMS	66/98 (67)	71/102 (70)		
Air EMS	24/98 (24)	20/102 (20)		
Does not apply [†]	5/98 (5)	4/102 (4)		
Transferred from				
Scene of accident/injury	65/98 (66)	73/102 (72)		
Home	4/98 (4)	3/102 (3)		
Other hospital	26/98 (26)	19/102 (19)		
Mechanism of injury blunt	23/98 (23)	12/102 (12)		
Fall	5/98 (5)	2/102 (2)		
MVC occupant ejected	3/98 (3)	1/102 (1)		
MVC occupant not ejected	6/98 (6)	3/102 (3)		
MVC motorcycle	5/98 (5)	3/102 (3)		
MVCpedestrian	1/98 (1)	2/102 (2)		
Struck by or against	3/98 (3)	1/102(2)		
Mechanism of injury	76/98 (77)	90/102 (88)		
penetrating	10/28 (11)	90/102 (88)		
Firearm	53/98 (54)	62 /102 (61)		
Impalement	1/98 (1)	1/102 (1)		
Stabbing	20/98 (20)	26/102 (25)		
Other	2/98 (2)	1/102 (1)		
AIS [median (IQR)]				
Head and Neck AIS	0, (0, 0)	0, (0, 0)		
Face AIS	0, (0, 0)	0, (0, 0)		
Chest AIS	1.5 (0, 3)	0 (0, 3)		
Abdomen AIS	3 (0, 4)	2 (0, 4)		
External AIS	1 (0, 1)	1 (0, 1)		
Extremity AIS	0 (0, 3)	0 (0, 3)		
ISS [‡] [median (IQR)]	17.5 (10, 29)	17 (9, 27)		
TBI	9/98 (9)	6/102 (6)		
Prehospital advanced airway§	16/98 (16)	12/102 (12)		
Supraglottic airway	2/98 (2)	1/102 (1)		
Endotracheal intubation	14/98 (14)	11/102 (11)		


Standard Care Arm: 48% receive platelet transfusion

CriSP-HS Trial-24-hour mortality

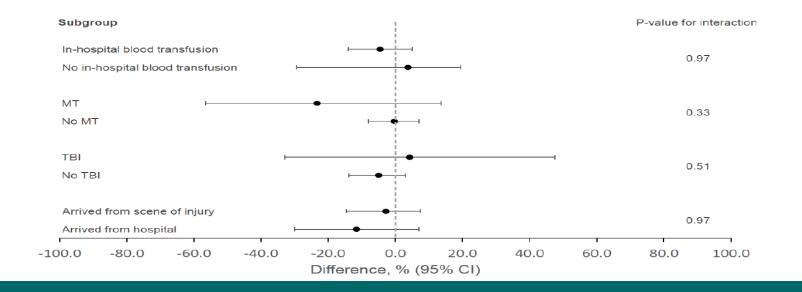
CSP 5.9% vs. 10.2%;

Difference -4.3%; 95% Cl, -12.8% to 3.5%, P = 0.26

Adjusted for site: OR 0.6 (95%Cl 0.2-1.6) P=0.27

CriSP-HS Trial-Secondary Outcomes

			Unadjusted analysis		Adjusted analysis	
Clinical Outcomes	Standard Care (N = 98)	Cold Stored Platelets (N = 102)	Difference (95% CI)	p- value	OR/ difference (95% CI)	p-value
3-h mortality, No. %	(N = 98) 7 (7.1)	6 (5.9)	-1.3% (-9.1, 6.3)	0.72	0.9 (0.3, 2.9)	0.86
In-hospital mortality °, No. %	13/82 (15.8)	12/91 (13.2)	-2.7% (-13.9, 8.2)	0.62	0.8 (0.3, 1.9)	0.62
30-day mortality ^{c,d} , No. %	13/82 (16)	12/91 (13)	-2.7% (-13.9, 8.2)	0.62	0.8 (0.3, 1.9)	0.62
Mortality from hemorrhage, No. %	7 (7.1)	7 (6.9)	-0.3% (-8.8, 7.4)	0.89	1.0 (0.3, 3.1)	0.99
ARDS, No. %	3/93 (3.2)	6/100 (6.0)	2.8% (-4.0, 9.8)	0.36	2.2 (0.6, 11.0)	0.27
Allergic/transfusion reaction, No. %	0 (0)	0 (0)	-		-	
Thromboembolic events, No. %	10/93 (10.8)	10/100 (10.0)	-0.8% (-10.2, 8.3)	0.86	0.9 (0.4, 2.4)	0.85
Achieve hemostasis, No. %	91/98 (92.9)	95/102 (93.1)	0.3 (-6.8, 7.4)	0.94	1.1 (0.4, 3.2)	0.90
Initial rapid TEG						NS
24-hour rapid TEG						NS
Initial coagulation measurements						NS
24-hour transfusion requirements						NS


CriSP-HS Trial- Prespecified Subgroups

А.

В.

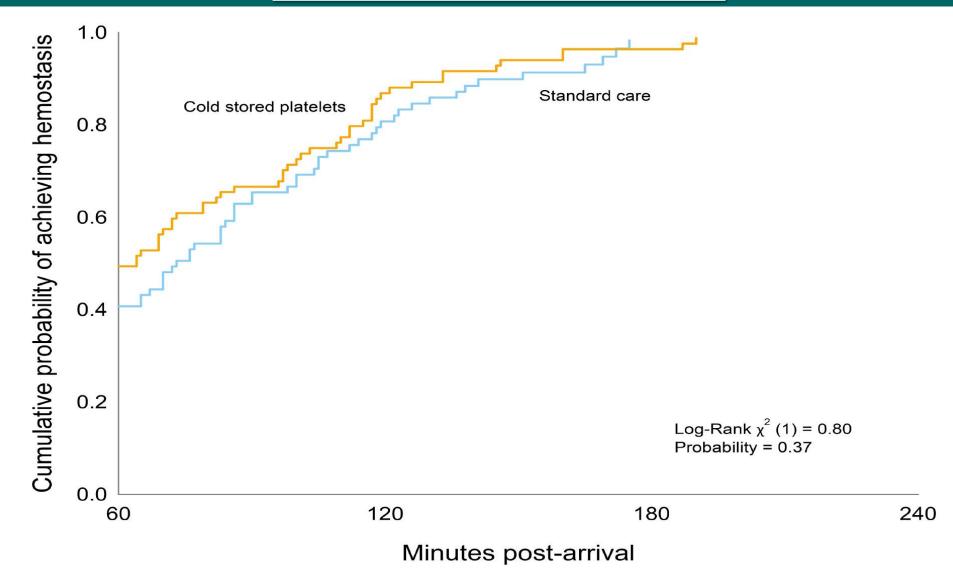
Characteristic	Standard Care n/N (%)	Cold Stored Platelets n/N (%)	Difference in 24-hour mortality
In-hospital blood	•		•
transfusion			
Yes	10/89 (11.2)	5/75 (6.7)	-4.6
No	0/9 (0.0)	1/27 (3.7)	3.7
Required MT			
Yes	6/15 (40.0)	2/12 (16.7)	-23.3
No	4/83 (4.8)	4/90 (4.4)	-0.4
Severe TBI			
Yes	1/10 (10.0)	1/7 (14.3)	4.3
No	9/88 (10.2)	5/95 (5.3)	-5.0
Arrived from			
Scene of injury	7/64 (10.9)	6/74 (8.1)	-2.8
Referral hospital	3/26 (11.5)	0/19 (0.0)	-11.5

Difference in risk of 24-h mortality

CriSP-HS Trial-Safety

	Standard Care (n = 98)	Cold Stored Platelets (n = 102)
Adverse Events Total	68	61
Serious Adverse Events Total	52	49
Individual Serious Adverse Events with Any Relatedness		
Coagulopathy	0	1
Pneumonia/VAP	1	1
Arterial Thrombosis	1	1
Deep Vein Thrombosis (DVT)	0	2
Pulmonary Embolism (PE)	2	3
Transfusion Associated Cardiac Overload (TACO)	0	1
Serious Adverse Events with Any Relatedness Total	4	9

CriSP-HS Trial-Storage Age CSP


	Cold Stored F	Platelets Shelf Time		
Clinical Outcome	≤ 7 days (n = 41)	8 – 14 days (n = 57)	Difference (95% CI)	p- value
24-h mortality, No. %	1 (2.4)	2 (3.5)	-1.1% (-10.1,10.1)	0.78
3-h mortality, No. %	1 (2.4)	2 (3.5)	-1.1% (-10.1, 10.1)	0.78
In-hospital mortality, No. %	4/39 (10.3)	5/49 (10.2)	0.1% (-13.5,15.7)	0.99
30-day mortality ^{b,c} , No. %	4/39 (10.3)	5/49 (10.2)	0.1% (-13.5, 15.7)	0.99
Mortality from hemorrhage ^b , No. %	3/40 (7.5)	2/56 (3.6)	3.9% (-6.2, 16.9)	0.65
ARDS ^b , No. %	3/40 (7.5)	3/56 (5.4)	2.1% (-8.7, 15.6)	0.69
Allergic/transfusion reaction, No. %	0 (0)	0 (0)	-	
Thromboembolic events ^b , No. %	4/40 (10.0)	6/56 (10.7)	-0.7% (-0.1, 0.2)	0.91
Initial rapid thromboelastography measurements, ^{d,e} median (IQR)				NS
24-hour rapid thromboelastography measurements				NS
Initial coagulation measurements				NS
24-hour coagulation measurements				NS
Transfusion requirements within 24-hours				NS

CriSP-HS Trial-Time to platelet transfusion

In those receiving platelets

Median time [IQR] to first platelet 31 [16, 53] mins vs 87 [45, 143] mins, P<0.01

CriSP-HS Trial Time to Hemostasis

CriSP-HS Limitations

Phase 2 design; Power

Lower than expected 24-hr mortality

Standard Care- Not all received platelets

 Evolving and variability in trauma resuscitation standard care

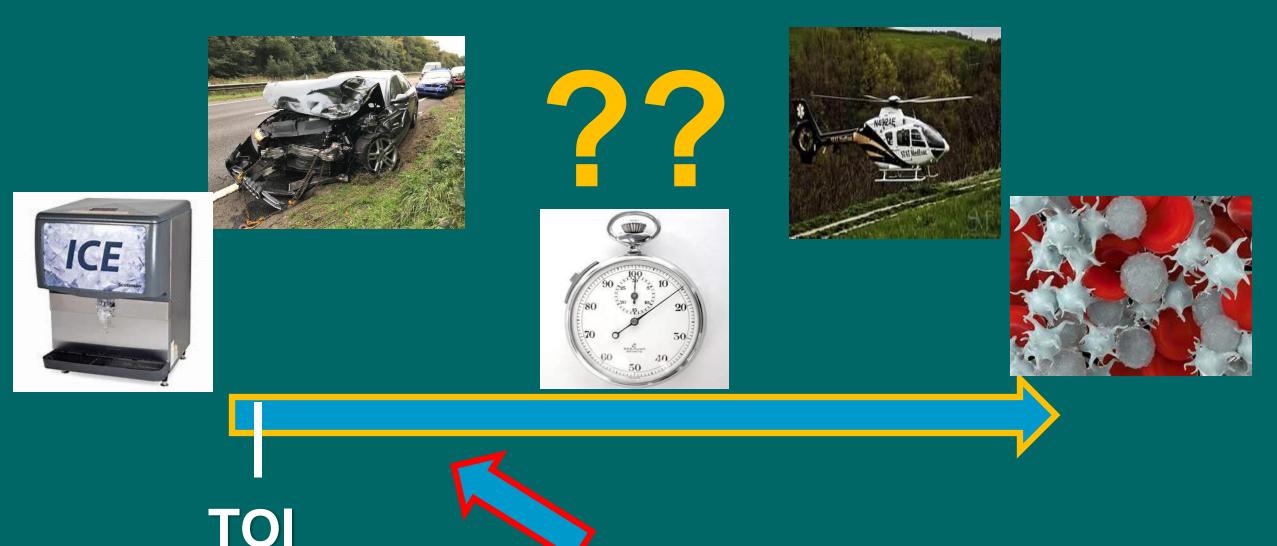
Earlier time to platelets for CSP arm

CriSP-HS Summary/Conclusions

- CSP Feasible, Safe for HS
- Lower 24-hr mortality; not significant
- No outcome differences out to 14 days
- Earlier time to platelets for CSP arm

CriSP-HS Trial

RANDOMIZED CONTROLLED TRIAL


OPEN

Early Cold Stored Platelet Transfusion Following Severe Injury A Randomized Clinical Trial

Jason L. Sperry, MD, MPH,* ∞ Francis X. Guyette, MD, MPH,† Bedda L. Rosario-Rivera, PhD,‡ Matthew E. Kutcher, MD,§ Lucy Z. Kornblith, MD,∥ Bryan A. Cotton, MD,¶
Chad T. Wilson, MD, MPH,# Kenji Inaba, MD,** Eva V. Zadorozny, PhD,† Laura E. Vincent, MS, RN,†† Ashley M. Harner, BS,††
Emily T. Love, BA,†† Joseph E. Doherty, MD, PhD,§ Joseph Cuschieri, MD,∥ Aaron E. Kornblith, MD,‡‡ Erin E. Fox, PhD,¶ Yu Bai, MD, PhD,¶
Marcus K. Hoffman, MD,# Catherine P. Seger, MD,# Jay Hudgins, MD,** Sheila Mallett-Smith, DNP, RN,** Matthew D. Neal, MD,*
Christine M. Leeper, MD,* Philip C. Spinella, MD,* Mark H. Yazer, MD,§§ Stephen R. Wisniewski, PhD,‡ and
the Cold Stored Platelet for Hemorrhagic Shock (CRISP-HS) Study Group

Ann Surg. 2024 Aug 1;280(2):212-221

The Early, Cold? Bird Gets The....

CriSP-TBI Trial Enrollment Completed-Dr. Neal

 Time to platelet transfusion median time [IQR] 29 [18,61] mins VS. 130 [72, 218] mins, **P<0.01**

The central message

- What the author wants you to learn or know.
- A broad idea about life.
- Usually not stated. Must be inferred.

Created by Rachel Lynette Copyright @2012 all rights reserved

CriSP-HS and CriSP-TBI Trials

Platelet transfusion- Can be urgently available

Acknowledgements

Participating Sites- Site Pls, Research Staff

LITES / MACRO Research staff-University Pittsburgh

Data Coordinating Center- University Pittsburgh

 FUNDING - DoD Contract No. W81XWH-16-D-0024, Task Order W81XWH-19-F-0494

