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Calcium and Phosphate lons Rule Cell Signaling

* Universal tools for signal transduction: Ca?* and PO#* alter local electrostatic fields and
protein conformations thereby controlling protein function

* Unlike Mg?*, Ca?* needs to be maintained at a low level in the cytosol, because it binds
water less tightly than and precipitates PO*-.

* Cellsinvest tremendous energy to maintain a >10,000-fold gradient between their
intracellular (100 nM) and extracellular (1.2 mM) calcium concentrations.

Maintaining and Using Ca2+ Gradients for Signaling

Ca?* release
(IP3R or RyR)

Clapham DE, Calcium Signaling, Cell (2007)



Calcium signals in endotheliopathy

Histone exposure produces massive aberrant endothelial calcium events
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Disruption of vasodilation
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SD-based approach to guantify Ca2+ events
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Ca“* signals in veins and arteries are distinct
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EC responses to histones and LPS are very different

Ca?t events
(5 minutes)

MRNA expression
(4 hours)
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EC responses to histones and LPS are very different
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Cell membrane effects of histones
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Working Model

 Primary injury (e.g., TBI)
« Trauma factors -> circulation
 Endothelial cell activation

PS translocation

Release of membrane particles
Thromboinflammation

 Endotheliopathy

Widespread disruption of microvascular
vasodilatory and barrier function

rimary injury Endothelial
Cells (ECs
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Ca?*-activated
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Phosphatidyl-
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Membrane activation



Membrane indicator FM1-43 applied to ECs
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Membrane effects of histones and other agents
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Do responses to histones = ionomycin?
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Spatiotemporal analysis of EC membrane activity
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Spatiotemporal analysis of endothelial membrane activity
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Endothelial cell activation with ionomycin

Jade Cleary, Grant Hennig



Calcium ionomycin — exosomes

Jade Cleary, Grant Hennig
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Histones — bleb city

Jade Cleary, Grant Hennig



The “killer question”

* We don’t see Ca?*entry into ECs when

we remove extracellular Ca?* RitmaklliIuraEnde il

g Cells (ECS iz

* So, we hypothesize that Ca?*into ECs
drives membrane effects.

* Does removal extracellular Ca?* prevent

membrane responses?
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Membrane effects of histones exacerbated by low Ca?*

Low Ca?* Histones Gadolinium + Histones
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Membrane effects are blocked by elevated Ca?*

Histones
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Clinical implications

« Administration of citrated RBCs decreases [Ca?*] to an extent which depends on
total dose of citrate and rate of infusion.

* Ca?* replacement therapy during massive blood transfusion is common, but
thresholds at which Ca?* should be administered are unknown.

* We show that increased Ca?* protects endothelial membranes from circulating
trauma factors such as histones (likely due to surface charge effects).

* This supports aggressive measures to replete Ca?* (*)

*During trauma resuscitation hypercalcemia is also associated with increased
mortality, increased blood product use, and greater hospital resource consumption.
Hypercalcemia also provokes RBC thromboinflammation.

DeBot M... Moore EE, Transfusion (2022)
MacKay EJ, ... Cannon JW, Anesthesia Analgesia (2017)
Goodman M, THOR meeting (2024)
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Bio-Electric Phenomena as an Etiologic Factor in
Intravascular Thrombosis'

PHILIP N. SAWYER! AND JAMES W. PATE®

From the Naval Medical Research Instilute, and Tissue Bank, Naval Medical School,
National Naval Medical Center, Bethesda, Maryland

that abnormal electric potentials in the

aortic wall seemed to be related to intra-
vascular thrombus formation. In a series of
dogs receiving aortic grafts, it was observed
that in most of the animals a positively
polarized intimal potential appeared in the
vessel at the time of operation. In four of the
dogs this positive potential persisted, and in
these dogs complete spontaneous thrombosis
occurred.

It has been demonstrated previously that
the intima of the normal aorta is polarized
negatively with respect to the adventitia (1).
However, trauma can reverse this polarity so
that the intima becomes positive with respect
to the adventitia. Because of these findings,
an extensive investigation was undertaken in
order to determine if the reversal of the
normal polarity of the vessel wall was related
to the formation of intravascular thrombi.

IN A PREVIOUS PAPER (1) it was reported

EXPERIMENTATION WITH IN VITRO CLOTTING OF
HEPARINIZED AND CITRATED BLOOD BY THE
PASSAGE OF AN ELECTRIC CURRENT
Technique

Several 3o-cc samples of blood were drawn from
one dog either heparinized with 1 cc (10 ¥) of heparin
for each s cc of blood or citrated with 40 mg of sodium
citrate/cc of blood. Aliquots of this blood were placed
in Kahn tubes. A pair of platinum electrodes of known
weight separated by lucite rings inserted into the

30 minutes. The electrode pairs were then removed
from the remaining blood in the tube and all unprecipi-
tated blood elements carefully blotted and removed
from the electrodes (fig. 1B). The electrodes and pre-
cipitated blood elements were then carefully weighed
and the net weight of the precipitated blood elements
was calculated.

F16. 1. A: Platinum electrode pair and tube used
to precipitate blood elements in wvitro. B: Appearance
of electrode pair after passing current for 3o minutes
in a test tube containing heparinized blood.
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Calcium block of Na+ channels and its effect on closing rate
C. M. Armstrong and Gabriel Cota PNAS March 30, 1999, 96 (7) 4154-4157

The effects of calcium on gating kinetics and open probability, as described by
Frankenhaeuser and Hodgkin (6), are usually explained by the surface charge
hypothesis. This hypothesis holds that calcium alters gating by neutralizing
negative charge at the membrane surface, thus Changln%the local field near
the voltage-sensing parts of the Na+ or K+ channels (5). The permeation-
blocking effects are regarded as separate phenomena, having no effect on
kinetics and open probability. An obvious alternative not ruled out by existing
data is that calcium’s effects on gating are associated with its ability to occupy
and block Na+ channels, and that it is calcium occupancy rather than a
surface charge mechanism that stabilizes the closed state when external
calcium concentration is increased. In support of this idea, we show here that
calcium block and closing rate of Na+ channels are closely related, and that
Na+ channels close freely, and perhaps preferentially, when calcium occupied.
The following paper (9) shows that calcium has large effects on gating only in
cases where it is free to enter and leave the channel, and that calcium seems
to be essential for channel closing.

5 B Hille lonic Channels of Excitable Membranes (Sinauer, Sunderland, MA, 1992).
6 B Frankenhaeuser, A L Hodgkin J Physiol (London) 137, 218-244 (1957).
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