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How to find and study a problem…



First get passed from mentor to mentor

• Ken Smith

• Sally Stein

• John Barrett

• Kim Nagy

• Richard Gamelli

• Ravi Shankar

• Michael Matthay

• Bob Mackersie

• Ken Mann

• Just a few of many…



Big audacious science…



Critical Illness and Injury Research Center

The leading and most comprehensive program for illness and 
injury research

Summary
and Funding

Programs
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NIH, DOD, BARDA 
funded basic labs. 
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S trials. Implementation 
and outcomes research
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Data and Model based 
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Find a team…



    CU Anschutz Ecosystem

Center for 
Bioengineering

Acute Care 
Clinical 

Trials Center 

Chemical countermeasures

Illustration of blood cells 
and human body

CIIRC

http://www.ott.nih.gov/technology/e-197-20110


Next find a problem…







Thromboinflammation in the wild...













How to study a problem: 
TIC :Clinical Characterization:



Acute Traumatic Coagulopathy

• Study at San Francisco General Hospital

• Ann Surg 245:812-818, 

• 209 severely traumatized patients admitted to SFGH

• Median time injury – hospital admission: 28 minutes 

• If patients were severely injured (ISS>15) and 
hypoperfused (BD >6) they were coagulopathic.



Coagulopathy after trauma

• Acute traumatic coagulopathy (ATC)
– 25-33% of patients

– Worse outcomes:
• Higher transfusion requirements

• Longer ICU & hospital stay

• Higher incidence of multiorgan failure

• 4-fold higher mortality: 10.9 vs. 46%

• Associated with multiple biochemical mechanisms and 
phenotypes.
– Systemic anticoagulation
– Dysregulated fibrinolysis

– Platelet dysfunction

• Equally important is endothelial dysfunction.

DIFFERENT AND DYNAMIC PHENOTYPES REQUIRE DIFFERENT RESUSCITATION



Trauma immunology…the quick and dirty 

•Trauma kills.

•Patients die from coagulopathy and bleeding.

•But truly they die and suffer from 
thromboinflammaiton.

•Whole blood has not solved the problem.

•We need personalized treatment.

•Shelf stable individualized resuscitation in a syringe

•Or even better pre deployed in a trauma vaccine 



What problem are we trying to 
solve when we resuscitate?

• Stop bleeding/progression?

• Treat coagulopathy?

• Prevent coagulopathy?

• Treat endotheliopathy?

• Prevent endotheliopathy?

• It is not the same in every patient and not the 
same minute to minute.



Big audacious science…

And a TEAM!!



TACTIC – a brief history
• TACTIC was funded from 2013-present by NHLBI, with periodic supplements 

from BARDA

• Mechanistic studies that dovetail with ongoing clinical trauma trials:

➢ Control of Major Bleeding After Trauma: COMBAT

➢ Prehospital Air Medical Plasma Trial: PAMPer

➢ Study of Tranexamic Acid during Air Medical Prehospital Transport: STAAMP

• Basic science investigators in multiple US sites probed pathways activated in 
trauma that drive coagulopathy and end organ damage:

• Novel DAMPs released in trauma

• Trauma-induced endothelial injury and inflammation

• Trauma-induced alterations in platelet function

• Inflammatory mechanisms driving tissue factor expression

• Multi-omics approaches to identify new players in TIC



What did we learn from TACTIC?
• Critical role of innate immune activation, complement  and 

DAMPs

• Multiple phenotypes of TIC

• Disease of thromboinflammation

• Endothelial activation and injury

• Transfusion of thawed plasma saves lives

Inflammation

Immune 
System 

Activation

Activation of 
Coagulation 

System

Coagulation

CRITICAL UNMET NEED: 

• DRIVERS and EFFECTORS of endothelial injury

• Crosstalk between coagulation, inflammation, 
and immunity

• How do we repair/resuscitate the endothelium?



Team Science
Principal Investigators

Matthew D. Neal, MD
Trauma surgeon
Expertise: Hemostasis, 
platelet function, 
coagulation assessment, 
extracellular vesicles, 
animal models of trauma

Michael Yaffe, MD PhD
Trauma surgeon
Expertise: Signaling in cell 
injury, innate immune 
function, complement 
biology, RNA-binding 
proteins, computational 
biology, 
animal models

Mitchell Cohen, MD
Trauma surgeon
Expertise: Coagulation biology, 
endothelial biology, 
thromboinflammation, protein C, 
animal models of trauma, 
computational modeling

Kalev Freeman, MD PhD
Emergency medicine physician
Expertise: Vascular biology, ion 
channels, calcium signals, animal 
models, genomics



Key Co-Investigators

Team Science

Wolfram Ruf, MD
Immunology and 
Vascular Biology
Expertise: Cell signaling 
of the coagulation 
cascade; targeted 
intervention in 
coagulation pathway

James Morrissey, PhD
Hemostasis and 
thrombosis, Biological 
Chemistry
Expertise: Novel regulators 
of the clotting cascade; 
novel antithrombotic/anti-
inflammatory agents

Kornblith

D’ Allessendro

Wisniewski

Barrett

Shea

Kong

Moore

Billiar

Hansen

Majumdar



Endothelium: the regulator of maladaptive responses and a 
crucial interface for thrombosis-inflammation crosstalk

• Central hypothesis: the synergy of tissue injury and shock after 
severe trauma leads to by-products of vascular thrombo-
inflammation that contribute to the phenotype of coagulopathy, 
tissue injury and organ failure through a progression to 
maladaptive endothelial injury; drivers and effectors of endothelial 
injury can be targeted to direct blood vessel endothelium towards 
reparative pathways. 



How to study a problem: 
Thromboinflammation



The endotheliopathy of trauma



Endotheliopathy of Trauma (EoT)

• Injured and shocked patients suffer from 
trauma induced coagulopathy (TIC) 

• ↑ bleeding, ↑ morbidity, ↑ mortality

• Abundant literature on TIC, less to define 
and identify endotheliopathy 

• Thromboinflammation → endotheliopathy, 
which impacts all patients

• Creates ICU phenotype → MODS, ↑ ventilator 
time, ↑ infection

• Results in endothelial permeability





Plasma omics measured by mass spectrometry

-----> 

Patient Prot
ein1

Prot
ein2

Met1 Met2 Met3 ...

Patient 
1

122 10 3e7 3e2 4e6 ...

Patient 
2

17 55 3e2 4e7 9e3 ...

... ... ... ... ... ... ...

... ... ... ... ... ... ...

-----> 



Average omic trends of injury and recovery over time
Metabolomics Proteomics



Endotheliopathy of Trauma 
Induced Trans Omics



Methods



Multi-Omics

• Proteins, metabolites, and oxylipins circulating 
in trauma plasma

• Allows rapid identification of thousands of 
potential mediators

• Integrative approach to understanding the global 
trauma milieu



Metabolomics

• These results 

demonstrate a state 

of oxidative stress, 

mitochondrial 

dysfunction, and 

fatty acid oxidation 

deficiency leading 

to an energy crisis



PRESENTATION TITLE

Energy Crisis



Endotheliopathy of Trauma 
Countermeasures and therapeutics:

The promise of PAR 1 





Mitigation of Trauma-Induced Endotheliopathy by Activated Protein C

Activated Protein C: Dual Roles

•Anticoagulation
• Clevage of Va/VIIIa

• Derepression of fibrinolysis

•Cytoprotection
• Alteration of gene 

expression

• Anti-inflammation

• Anti-apoptosis

• Barrier protection



Mitigation of Trauma-Induced Endotheliopathy by Activated Protein C

Cytoprotective APC: 3K3A-APC

• Recombinant APC
• PROWESS Trial: Xigris ®

• PROWESS-SHOCK Trial

• 3K3A-APC
• Retains approximately 5% 

anticoagulant activity

• Preserves its cytoprotective 
functions​

• 3K3A-APC in phase 3 stroke 
trials



Endotheliopathy of Trauma. 
Endothelial Barrier Function 

(permeability)



Mitigation of Trauma-Induced Endotheliopathy by Activated Protein C



Mitigation of Trauma-Induced Endotheliopathy by Activated Protein C

• Plasma samples were collected from injured patients on arrival to a Level 1 Trauma Center

Phenotypes Minimally Injured: ISS <15 Severely Injured: ISS >15

Min. Shock: Base Excess > -6 Minimal Injury or Shock Severely Injured

Severe Shock: Base Excess < -6 Severe Shock Severe Injury and Shock

• Electric Cell-Substrate Impedance Sensing (ECIS)

• Human Umbilical Vein Endothelial Cells (HUVECs)



Mitigation of Trauma-Induced Endotheliopathy by Activated Protein C

3K3A-aPC mitigates endothelial permeability
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Mitigation of Trauma-Induced Endotheliopathy by Activated Protein C

• Pre-treatment with 3K3A-APC, which retains its cytoprotective function but  ~5% of its anti-

coagulant function, abrogates the effects of trauma-induced endotheliopathy on HUVECs. 
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The proteomic storm and metabolomic energy crisis is 
prevented and treated by 3K3A-aPC



3K3A-activated protein C (APC), an engineered cell-signaling analogue of the serine 
protease APC, has cytoprotective effects in brain injury and ischemia and is 
currently in phase III human trials as a neuroprotectant for patients with ischemic 
stroke. We are studying 3K3A-APC as a novel drug to prevent endothelial 
dysfunction and immune storm, mitigate TIC, and help set the ‘inflammatory 
thermostat’ allowing causalities sufficient time to reach definitive care and achieve 
recovery without  thromboinflammatory morbidity and mortality. As a therapeutic, 
3K3A-APC can be shelf stable and administered early and far forward even in an 
autoinjector self given by the injured. This makes it an ideal ‘resuscitation in a 
syringe’ providing TIC mitigating and inflammamodulatory treatment directly after 
injury. While treatment after injury will provide benefit, successful prophylactic 
delivery of therapeutic levels of protective recombinant proteins to at-risk military 
personnel immediately before deployment with mRNA vaccines will herald the 
next generation of precision therapeutics custom-designed to protect troops from 
any specific acute threat including not only polytrauma but also exposure to 
chemicals, radiation, or pathogens. Building on recent advances in mRNA vaccines  

and materials science, we are conducting a preclinical trial of mRNA/LNPs designed 
to deliver payloads of 3K3A-aAPC for treatment of endotheliopathy and TIC in 
polytrauma. This novel mRNA therapeutic will provide a shelf-stable immune 
modulator and “trauma vaccine” delivering endothelial and immune therapy in a 
single dose administered (1) immediately after injury or (2) prophylactically to at-
risk military personnel before deployment. 

“Next-Gen” mRNA Vaccines for Trauma: Overview

Lipid nanoparticle mRNA delivery of cell-signaling selective activated Protein C: 

“Next-Gen” precision immunotherapy  for thromboinflammatory modulation in trauma.



Endotheliopathy of Trauma:
 Calcium Signaling



Combining mechanism, prediction 
and precision care.

In silico



Plasma omics (biomarkers) 
reflect and predict trauma 

patient trajectories and 
outcomes.

What plasma proteomics and metabolomics can reveal about 
biology underlying patient divergence following critical injury

Why do similarly injured patients have divergent outcomes?



3D trauma patient omics 

trajectories 
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Omics improves prediction of outcomes among similarly injured patients



Dynamic physiologic states exist in a physiologic state 
space

 Our patients move through these states optimally guided 

towards health



Why do we need this?



22 center retrospective study

56



COMBAT TRIAL AT DENVER HEALTH SHOWED 

NO BENEFIT FOR PRE HOSPITAL PLASMA



PAMPR TRIAL in PITTSBURGH SHOWED 

MODEST BENEFIT FOR PRE HOSPITAL PLASMA



How to study a problem: 
Combining mechanism, prediction 

and targeted care.
2. Model Driven Dynamics



Building an autonomous 
controller: Coagulation control 

systems.









Hockin-Mann Chemical Kinetic 
Equations

64

• 34 states, 43 chemical 

kinetic equations.  No 
Protein C or Activated 

Protein C effects.

  

• Rate constants 
aggregated from 2002 
literature.

• Initial conditions specify 
mean plasma 
concentrations for 
proteins, with tissue 
factor (TF) variable.



65

Vision and Goal

Solution: Personalized dynamic approach



Current Understanding: Coagulation Cascade

10/22/2024 66
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• Dynamical System Input: Tissue Factor

• Dynamical System Output: Thrombin

• Need an input-to-output measurement.

Claim: Possible to Simplify
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Thrombin Measurement

• The Calibrated Automated Thrombogram (CAT) is a 
fluorogenic assay that measures the time-history of 
thrombin generation in a blood sample upon the addition 
of (typically 5pM of) tissue factor.

10/22/2024 68



Normal vs. Trauma CATs
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• Can we emulate trajectories with a single-input single-
output thrombin dynamical system model with a separable 
delay for treatment guidance? What kind of model?



Building a Black-Box Model
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• Can approximate a 
CAT peak.  

• Suppose we choose 
the following non-
delayed function as 
first approximation:

y(t) =  t2 e-t

•  t2 → three states.

• Look at output in frequency domain as the result of some 
dynamical system:
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Building a Black-Box Model: 3 states, 5 pars.
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• Suppose input is a (unit) impulse, U(s) = 1:

• System transfer function, including delay:

( ) 32233
33

22

)(

)(









+++
=

+
=

sssssU

sY

sTe
asasas

b

sU

sY −

+++
=

01

2

2

3)(

)(



Building a Black-Box Model: Traditional Form

• Define

10/22/2024 72

sT

nn

n e
ssps

Kp

sU

sY −












++








+
=

22

2

2)(

)(







Performance
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Extending to viscoelastic measures
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Viscoelasticity of Whole Blood
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Comparison to Maxwell Model of Viscoelasticity

Maxwell Model: 
several parallel Maxwell elements (a spring and a damper connected in series)
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Viscoelasticity of Whole Blood
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TEG graph estimation using: 
Coagulation factors II, V, VII, VIII, IX, X, ATIII, PC, D-dimer

Factor 
Concentrations

to
Whole Blood TEG



78

We can model blood clotting in silico

• a novel and simple model that captures the viscoelastic effects in plasma samples

• an estimate of the model output using easily-measurable coagulation factors 

• a meaningful relationship between thrombin and this viscoelastic clot model

• a second new model to express viscoelastic clot formation, stabilization, and degradation in whole blood

• a comparison to the generalized Maxwell viscoelastic model
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Future Work and Broad Impact

• Blood clot precision control using coagulation factors: obviating the use of generic treatment and improve 
patient outcome. 

• Application to other coagulation disorders: hemophilia, von Willebrand disease, factor V Leiden, 
pulmonary embolism, deep vein thrombosis, stroke, and sickle cell disease.



Why does this matter?

•We have come a long way understanding and 
mitigating TIC.

•Our ‘one size fits all’ resuscitation has reduced 
mortality but misses the target often.

•While patients die early many are missed and 
morbidity is significant and important.

•Mitigating thromboinflammation can fix TIC 
and inflammation and improve outcomes.



We need (and can deliver) 4 things.

•An understanding of phenotypes of 
thromboinflammation after trauma (threat x)

•Cytoprotective agent(s) that can modulate 
coagulation and inflammation after trauma. 
•This can be agnostic and personalized.
•Shelf stable resuscitation in a syringe.

•Prevention via a trauma vaccine

•Personalized medicine and optimized 
performance via measurement and modeling.





Mitchell.Cohen@cuanschutz.edu
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