THOR 2019: CRYO

Melissa Cushing, MD Professor of Pathology and Laboratory Medicine Director of Transfusion Medicine Weill Cornell Medicine, New York City

Bleeding management <u>efficacy</u> using cryo vs factor concentrates

In Vitro Efficacy

Tanaka K, BJA, 2019

Table 2 Thromboelastometry data		
	INTEM	
	NP	
Clotting time	100–240 s	
Baseline	164	
	(155_179)	
Diluted	205	
	(189–218)	
Diluted+hFC	205	
	(188–210)	
Diluted+Cryo	188	
	(183–216)	
Diluted+vWF/FVIII	181	
	(167–216)	
Maximum clot firmness	53—72 mm	
Baseline	63	
	(62—66)	
Diluted	49	
	(47–55)	
Diluted+hFC	57 [†]	
	(54–61)	
Diluted+Cryo	54^{\dagger}	
	(53–60)	
Diluted+vWF/FVIII	48	
	(46–53)	

Clinical Efficacy: Systematic Review of Fibrinogen Concentrate vs Cryo

- 4 studies:
 - 1 RCT in elective cardiac surgery (Galas et al) (n=63)
 - 3 observational trials (n=218)
- Findings:
 - Mortality not reported in any study
 - \circ No significant difference in:
 - -Increase in fibrinogen level
 - -Bleeding
 - -RBC transfusions
 - -Thromboembolic complications
- Pending studies: FIBRES and FEISTY

FIBRINOGEN CONCENTRATE IS THE FUTURE

Logistics Safety

Jeannie Callum, MD, FRCPC Director of Utilization, LMMD Professor, UoT

91,065 RBC transfusions were given to 23,634 adults

Heddle et al. Lancet Haematol 2016

LOGISTICS

- Hospitals = freezers; manpower intensive; slow; high wastage
- Bedside = a long wait in an exsanguinating patient

MINUTES MATTER

SAFETY

Prevention will be cheaper

- Emerging pathogens
- "Escaping" pathogens
- Risks to the MDs making this decision
- Other factors in cryo
 increasing the clot risk
- \circ 35% of the time <3g

Cardiac Surgery

FIBRES

Trial

735 patients

Superior for elective surgery OR 0.81 (0.69-0.96) n=466

Fibrinogen Concentrate / Cryoprecipitate

Optimized Fibrinogen Replacement Product

Standardized dose for fibrinogen & FXIII

Make Cryo	
Great	
Again!	

Pathogen Inactivated

Immediately Available/Longer Shelf Life

Stored at Room Temperature

Highly concentrated/Minimal Volume

Limit level of FVIII

Fast and simple infusion

And Affordable!

Pathogen Reduced Cryoprecipitate Thawed and Stored for 5 days at RT

EXTEM

FXIII Activity

Cushing and Haas et al, Transfusion 2019.

Summary

5 day PR Cryo

Percentage NUMBER

Billioware . And Address in such it

Fibrinogen Concentrate

QUESTION: LYOPHILIZED CRYOPRECIPITATE?

Jeannie Callum, MD, FRCPC Director of Utilization, LMMD Professor, UoT

LYOPHILIZED CRYO

NO!

- Not pathogen reduced
- ◎ 35% suboptimal dose
- Fractionators have more than enough fibrinogen than we could ever need (IVIG/SCIG drive fractionation)
- Technologists concerns regarding ABO incompatibility
- Concern about the increase risk of thromboembolic complications from the contaminants in cryo

TABLE 1. Comparison of coagulation measurements in blood products

Measurement	Standard Cryo	PR Cryo	Fibrinogen concentrate
Fibrinogen activity (mg/dL)	864	948	1616
VWF:Ag (%)	904	663	346
VWF:Rco (%)	593	459	104
Factor VIII (%)	410	99.6	11
Factor XIII (%)	224	269	48
VWF:Ag = von Willel Willebrand factor risto	orand factor and	tigen assay; V	WF:RCo = von

Cushing M, Transfusion, 2019

Stability of fibrinogen in Cryo after thawing at RT

Lokhandwala, Transfusion, 2018

Fenderson, Transfusion, 2019

What is in Cryoprecipitate? Do we need it all?

Protein	Approximate Amount
Fibrinogen	~250-350 mg (min 150 mg)
Factor VIII	> 80 IU
Von Willebrand Factor	80-120 IU
Factor XIII	40-60 IU
Fibronectin	Unknown

Economic Evaluation Cryoprecipitate versus Fibrinogen Concentrate

- Assumptions:
 - Cost of Cryo dose (5 units) \$322
 - Cost of FC dose (1 gram) \$740
 - $\,\circ\,$ Wastage rate of Cryo 28%
- Results:
 - Without considering cryo wastage: FC is \$1254-1672 more per dose
 - After taking into account wastage and technologist's salary (\$25/h), FC was \$976-1303 more expensive than Cryo
 - To be economically competitive with Cryo, FC would have to cost \$414/g

Okerberg CK et al, Vox Sanguinis, 2016

FXIII

Haas T, Cushing M, Asmis L, Scandinavian J of Clin and Lab Investigation

Table 3.	Comparison	of plasmatic	coagulation	measurements	following	in	vitro
suppleme	entation usin	g Haemocom	plettan and	Fibryga.			

Measurement	Haemocomplettan	Fibryga	p value
Clauss (g L ⁻¹)	1.76 (0.14)	1.65 (0.14)	<.001
Fibrinogen antigen (g L ^{—1})	1.90 (0.17)	2.02 (0.18)	.026
Fibronectin (a I^{-1})	0.08 (0.02)	0.02 (0.01)	<.001
Factor XIII (%)	31.0 (6.2)	40.9 (6.2)	<.001

Fibryga 10.1 U/mL FXIII Haemocomplettan 7.2 U/mL FXIII

Data are presented as mean (SD).

Г