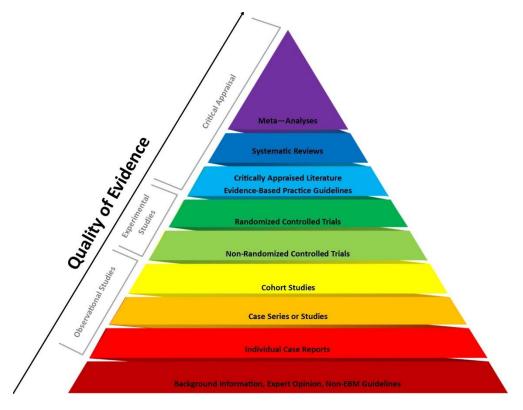


Tranexamic Acid and Thrombosis Risk: The Last Talk that You Should Ever Hear about this Topic

Matthew D. Neal, MD FACS

Roberta G. Simmons Associate Professor of Surgery Associate Professor of Critical Care Medicine and the Clinical and Translational Science Institute Co-Director of the Pittsburgh Trauma and Transfusion Medicine Research Center

nealm2@upmc.edu


Disclosures

- Research funding: NIH, DoD
- Research funding: Haemonetics, Instrumentation Laboratory
- Honoraria, travel support, consulting: Janssen, CSL Behring, Haemonetics, Meredian
- Scientific advisory board, equity stake: Haima Therapeutics
- US Patents: <u>DIELECTRIC SENSING TO CHARACTERIZE HEMOSTATIC</u> <u>DYSFUNCTION</u> Serial Number: 16/837,704; <u>NOVEL TLR4 INHIBITORS</u> <u>FOR THE TREATMENT OF HUMAN INFECTIOUS AND INFLAMMATORY</u> <u>DISORDERS</u> Serial Number: 17/174,018

Disclosures

Journal of Trauma and Acute Care Surgery

• I now regret publishing this paper 4 years ago...

AAST 2018 PODIUM PAPER

Tranexamic acid administration is associated with an increased risk of posttraumatic venous thromboembolism

Myers, Sara P. MD; Kutcher, Matthew E. MD; Rosengart, Matthew R. MD; Sperry, Jason L. MD; Peitzman, Andrew B. MD; Brown, Joshua B. MD; Neal, Matthew D. MD

Author Information ⊗

Journal of Trauma and Acute Care Surgery: January 2019 - Volume 86 - Issue 1 - p 20-27 doi: 10.1097/TA.000000000000000000

Objectives and overview

- Origins of the myth of TXA and thrombosis
- Randomized trials in non-traumatic hemorrhage
- Randomized trials in surgery
- Recent randomized trials in trauma

Does TXA increase risk of VTE?

Military Application of Tranexamic Acid in Trauma Emergency Resuscitation (MATTERs) Study

Jonathan J. Morrison, MB ChB, MRCS; Joseph J. Dubose, MD; Todd E. Rasmussen, MD; Mark J. Midwinter, BMedSci, MD, FRCS

AAST 2018 PODIUM PAPER

Tranexamic acid administration is associated with an increased risk of posttraumatic venous thromboembolism

Myers, Sara P. MD; Kutcher, Matthew E. MD; Rosengart, Matthew R. MD; Sperry, Jason L. MD; Peitzman, Andrew B. MD; Brown, Joshua B. MD; Neal, Matthew D. MD

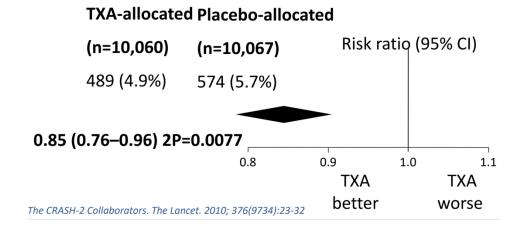
Author Information ⊗

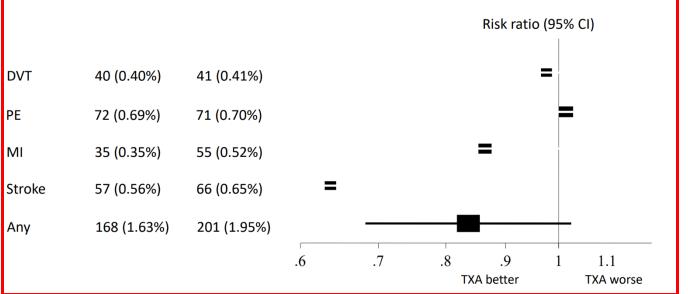
Journal of Trauma and Acute Care Surgery: January 2019 - Volume 86 - Issue 1 - p 20-27 doi: 10.1097/TA.0000000000002061

Does TXA increase risk of VTE? US Military Experience

Table 1. Demographic and Clinical Data for Overall Cohort and Subgroups Based on Receipt of Tranexamic Acid (TXA)

IV	/lean (SD)					
<u>0</u>	Overall (n =	 VTE event rate = 15.6% 	e Transfusion (n = 282)			
	TXA (n = 146)		No TXA 8) (n = 264)	P Value		
· · · · ·	50 (34.2)	 TXA independent risk for VTE (OR 	13 (4.9)	.07		
		2.58)				
		 TXA group = higher ISS, transfusion 				
		requirement				
Appropriate trane	examic acid	 12.4% TXA "overuse" 	nexamic acid			
121 Patients red tranexamic after injury	ceived c acid <3 h	 "A reevaluation of the use of TXA in 	not receive acid			
	,	combat casualties should be				
47 Patients (38.8% a venous throm		undertaken") sustained a oembolism			


20,211 patients from 274 hospitals in 40

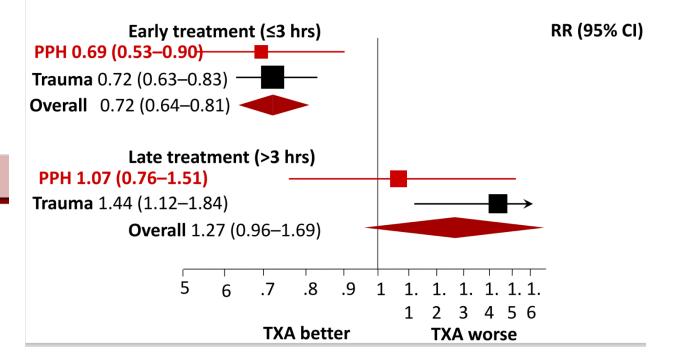


countries

The CRASH-2 trial collaborators Lancet. 2010 Jul 3;376(9734):23-32.

Slide courtesy of Bev Hunt

A randomised, double blind, placebo controlled trial among 20,060 women with a clinical diagnosis of postpartum haemorrhage.


WOMAN Trial Collaborators

Thromboembolic events

	TXA (N=10033) n (%)	Placebo (N=9985) n (%)	Risk ratio (95% Cl)	P-value
Any event	30 (0.3)	34 (0.3)	0.88 (0.54–1.43)	0.60
Venous events (DVT, PE)	20 (0.2)	25 (0.3)	0.80 (0.44–1.43)	0.45
Deep vein thrombosis	3 (0.03)	7 (0.1)	0.43 (0.11–1.65)	0.20
Pulmonary embolism	17 (0.2)	20 (0.2)	0.85 (0.44–1.61)	0.61
Arterial events (MI, stroke)	10 (0.1)	9 (0.1)	1.11 (0.45–2.72)	0.83
Myocardial infarction	2 (0.02)	3 (0.03)	0.66 (0.11–3.97)	0.65
Stroke	8 (0.1)	6 (0.1)	1.33 (0.46–3.82)	0.60

No increased thromboembolism

Slide courtesy of Bev Hunt

TXA and Thrombosis Summary

Controversy #1: TXA and Thrombosis

Given the anti-fibrinolytic effects of TXA, concern exists regarding increased risk of thromboembolic events

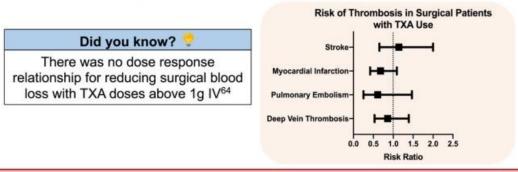
Non-surgical Patients

Risk of arterial and venous thrombosis in <u>non-surgical patients</u> receiving systemic TXA⁶¹:
 Systematic review of 22 RCTs (including CRASH-2 and WOMAN)

		b	SO		
		DVT	PE	MI	Stroke
Number of trials (n)		8 (46630)	6 (43161)	3 (42470)	5 (42815)
Weighted event rates	ТХА	0.28%	0.52%	0.27%	0.45%
	No TXA	0.29%	0.54%	0.30%	0.41%
RR (95% CI)		0.97 (0.69-1.37)	0.97 (0.75-1.26)	0.88 (0.43-1.84)	1.10 (0.68-1.78)

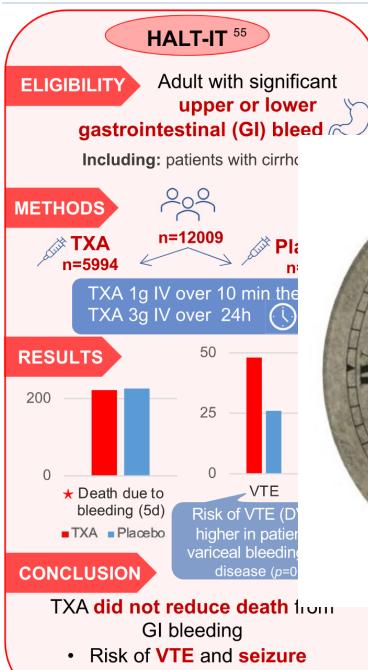
No increased risk of venous or arterial thrombosis in non-surgical patients receiving systemic TXA

Patients with a known history of thrombosis were excluded from these studies. In the WOMAN trial, patients with a known thrombotic event during pregnancy were excluded


ILLUSTRATED REVIEW

Tranexamic acid evidence and controversies: An illustrated review

Nicole Relke MD¹ ⊚ У | Nicholas L. J. Chornenki MD¹ У Michelle Sholzberg MDCM, MSc, FRCPC^{2,3,4} У


Surgical Patients

Studies of <u>surgical patients</u> have also not shown a significant increase in thrombotic events for any surgery type while reducing blood loss^{62,63,64}

In the absence of patient specific factors (e.g. history of thrombosis or cirrhosis) evidence suggests there is no reason to avoid TXA in medical or surgical patients for fear of thrombosis

research & practice in thrombosis & haemostas

higher in the TXA group

Rates of VTE 0.8% (TXA) vs 0.4% (no TXA) (RR 1.85 Cl 1.15-2.98)

LT-IT Trial⁵⁶

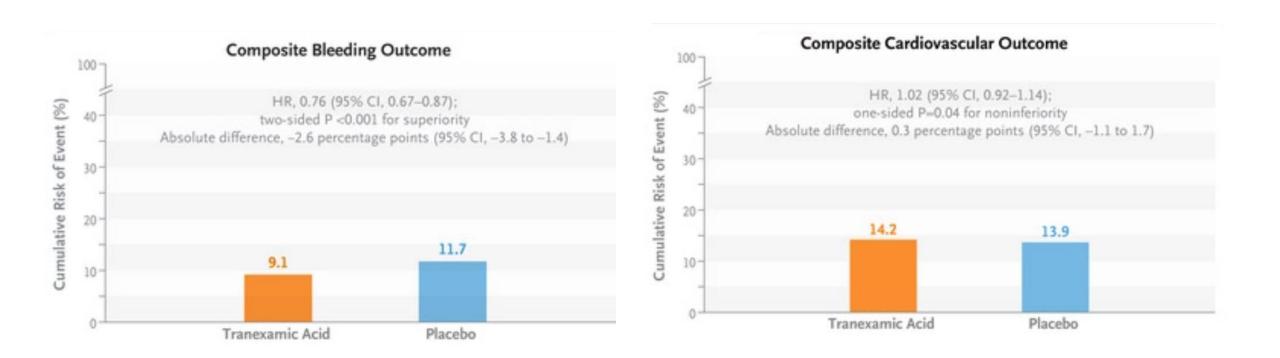
je (58 yrs vs. 35 yrs ASH-2 trial) **ies** (7% malignancy)

disease (40%): is in cirrhosis⁵⁷ may ;iated with ↑VTE⁵⁸

gher dose

kplain increased risk of
 seizure)

Relke, et al. RPTH 2021


The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Tranexamic Acid in Patients Undergoing Noncardiac Surgery

P.J. Devereaux, M.D., Ph.D., Maura Marcucci, M.D., Thomas W. Painter, M.B., Ch.B., David Conen, M.D., M.P.H., Vladimir Lomivorotov, M.D., Daniel I. Sessler, M.D., Matthew T.V. Chan, M.B., B.S., Ph.D., Flavia K. Borges, M.D., Ph.D., María J. Martínez-Zapata, M.D., Ph.D., Chew Yin Wang, M.B., Ch.B., Denis Xavier, M.D., Sandra N. Ofori, F.W.A.C.P., <u>et al.</u>, for the POISE-3 Investigators^{*}

JAMA Surgery

Original Investigation

704 Articles identified through 78 Articles identified through database search manual search 782 Articles 4 Duplicates removed **ONLINE ONLY** FREE 778 Articles 401 Articles excluded 46 TXA not applied intravenously 64 Nonhuman trials 291 Non-RCTs 377 Articles assessed for eligibility 158 Articles excluded 55 Ineligible study design 92 Ineligible comparator **11** Full text or translation not available **219** RCTs included in qualitative synthesis

192 RCTs included in guantitative synthesis

(meta-analysis)

27 Articles excluded

(ineligible end points)

April 14, 2021

Association of Intravenous Tranexamic Acid With Thromboembolic Events and Mortality A Systematic Review, Meta-analysis, and Meta-regression

Isabel Taeuber¹; Stephanie Weibel, PhD²; Eva Herrmann, PhD³; Vanessa Neef, MD¹; Tobias Schlesinger, MD²; Peter Kranke, MD²; Leila Messroghli, MD¹; Kai Zacharowski, MD, PhD¹; Suma Choorapoikayil, PhD¹; Patrick Meybohm, MD^{1,2}

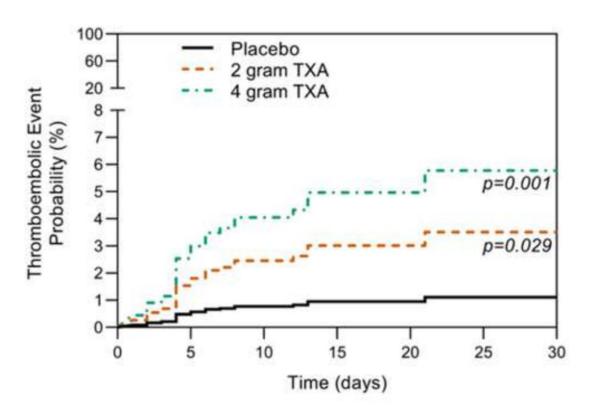
 \gg Author Affiliations | Article Information

JAMA Surg. 2021;156(6):e210884. doi:10.1001/jamasurg.2021.0884

From: Association of Intravenous Tranexamic Acid With Thromboembolic Events and Mortality: A Systematic Review, Meta-analysis, and Meta-regression

JAMA Surg. 2021;156(6):e210884. doi:10.1001/jamasurg.2021.0884

Table 1. TXA and Total Thromboembolic Events


		TXA		Control						
Medical discipline	No. of included studies	Events	No. of included patients	Events	No. of included patients	– Model	Risk difference (95% CI)	P value	I ² , %	
Cardiothoracic	16	72	3171	74	3009	Fixed effect	-0.001 (-0.009 to 0.007)	.83	0	
						Random effects	-0.001 (-0.007 to 0.008)	.91	- 0	
Neurological	12	282	2007	230	2000	Fixed effect	0.026 (0.007 to 0.045)	.01	57	
						Random effects	0.018 (-0.013 to 0.048)	.26		
Gynecological	26	35	12 356	41	12 286	Fixed effect	-0.001 (-0.002 to 0.001)	.53	0	
						Random effects	-0.001 (-0.002 to 0.001)	.50		
Orthopedic	101	172	4787	113	4149	Fixed effect	0.001 (-0.007 to 0.009)	.79	0	
						Random effects	0.001 (-0.004 to 0.007)	.64		
Major trauma	1	204	10060	233	10067	Fixed effect	-0.003 (-0.007 to 0.001)	.16	NA	
						Random effects	-0.003 (-0.007 to 0.001)	.16	— NA	
Maxillofacial	6	0	265	0	192	Fixed effect	0.000 (-0.023 to 0.023)	>.99	0	
						Random effects	0.000 (-0.019 to 0.019)	>.99	— 0	
Pediatric	2	0	42	0	40	Fixed effect	0.000 (-0.067 to 0.067)	>.99	0	
						Random effects	0.000 (-0.064 to 0.064)	>.99	— 0	
Other	12	14	799	15	670	Fixed effect	-0.004 (-0.021 to 0.013)	.62	0	
						Random effects	-0.004 (-0.018 to 0.011)	.63	— 0	
Total	176	779	779 33 487	706	32 413	Fixed effect	0.001 (-0.002 to 0.003)	.66	0	
						Random effects	-0.001 (-0.002 to 0.001)	.39	- 0	

Abbreviations: NA, not applicable; TXA, tranexamic acid.

TAMPITI secondary analysis

• Placebo N=50, 2gm TXA N=49, 4gm TXA N=50

Spinella, et al, *Transfusion*, in press

Limitations:

- Small (6, 13, 16 patients w/ TE)
- Multiple events in the same patients
- Included "abdominal" TE (not usually quantified)
- <u>Screening</u>
- TE patients: older, sicker, different injuries, required more blood
- Model did not control for all TE risk variables but did include IL-8 (?!?!)

The Immunologic Effect of Early Intravenous Two and Four Gram Bolus Dosing of Tranexamic Acid Compared to Placebo in Patients With Severe Traumatic Bleeding (TAMPITI): A Randomized, Double-Blind, Placebo-Controlled, Single-Center Trial

Philip C. Spinella, Kimberly A. Thomas, [...], and for the TAMPITI Investigators

Figure 3. Prespecified Tranexamic Acid Dose Response Analysis, Time to Intervention, and Shock Severity Post Hoc Subgroup Analysis for 30-Day Mortality

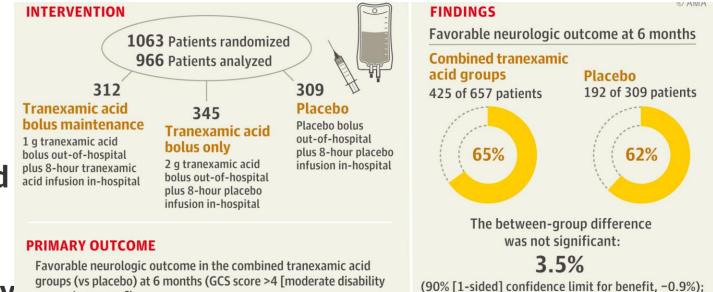
A Mortality risk by tranexamic acid prespecified dosing regimens

Research

JAMA Surgery | Original Investigation

Tranexamic Acid During Prehospital Transport in Patients at Risk for Hemorrhage After Injury A Double-blind, Placebo-Controlled, Randomized Clinical Trial

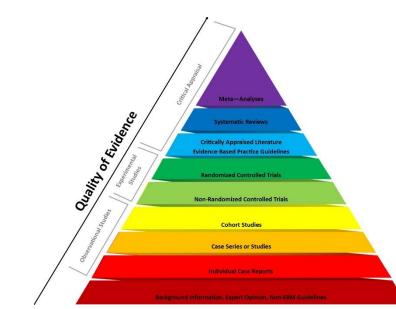
Francis X. Guyette, MD, MPH; Joshua B. Brown, MD, MSc; Mazen S. Zenati, MD, PhD; Barbara J. Early-Young, BSN; Peter W. Adams, BS; Brian J. Eastridge, MD; Raminder Nirula, MD, MPH; Gary A. Vercruysse, MD; Terence O'Keeffe, MD; Bellal Joseph, MD; Louis H. Alarcon, MD; Clifton W. Callaway, MD, PhD; Brian S. Zuckerbraun, MD; Matthew D. Neal, MD; Raquel M. Forsythe, MD; Matthew R. Rosengart, MD, MPH; Timothy R. Billiar, MD; Donald M. Yealy, MD; Andrew B. Peitzman, MD; Jason L. Sperry, MD, MPH; and the STAAMP Study Group


	Tranexamic acid dose	No./total No. Risk ratio e (%) of patients (95% CI)		t	Favors ranexamic acid	Favors placebo	<i>P</i> value		
	Placebo (reference)	45/452 (10.	0)						
	Abbreviated	14/150 (9.3) 0.94 (0.65	-1.36) -			.74		
	Standard	11/141 (7.8) 0.78 (0.50	-1.24)	-		.30		
	D	11/151/7 3	072/054	0.00)	-	5.2)	04		
Multiple organ fai	ilure	33	(7.4)	39 (8.6)		1.2 (-2.4 to 4.7)	.52		.94
Acute respiratory	distress syndrome	42	(9.4)	39 (8.6)		-0.8 (-4.6 to 2.9)	.66		.97
Nosocomial infection		88 (19.7)		66 (14.5)		-5.2 (-10.1 to -0.3)	.04		.75
Seizure in first 24 h		5 (1.1)	7 (1.5)		0.4 (-1.0 to 1.9)	.58		.94
Pulmonary embolism		13 (2.9)		7 (1.5)		-1.3 (-3.3 to 0.5)	.16		.78
Deep vein thromb	Deep vein thrombosis		12 (2.7)			-1.2 (-3.3 to 0.5)	.23		.83
	51	10/200 (7.0)	10/219 (4.0)	0.00 (0.44-0.83		-		.002	
	>1	27/214 (12.6)	26/223 (11.7)	0.92 (0.52-1.64	+)			.79	
	Shock severity								
	Tachycardia only	21/320 (6.6)	18/316 (5.7)	0.87 (0.56-1.34	4)		_	.52	
	SBP <90 mm Hg	13/101 (12.9)	13/99 (13.1)	1.02 (0.55-1.90))			.95	
	SBP <70 mm Hg	11/31 (35.5)	5/27 (18.5)	0.52 (0.34-0.80)) ———	-		.003	
						.50 1.00 isk ratio (95% CI)	2.0	00	

September 8, 2020

Effect of Out-of-Hospital Tranexamic Acid vs Placebo on 6-Month Functional Neurologic Outcomes in Patients With Moderate or Severe Traumatic Brain Injury

Bolus (2gm) **Bolus maintenance** Placebo Adverse events, No. (%)^h Seizure or seizure-like activity 5(2) 17 (5) 7(2) Any thromboembolic event 13 (4) 31 (9) 30(10) 3(1) 2(1) 1 (<1) Myocardial infarction 3(1) 6(2) 5(2) Pulmonary embolism Thrombotic stroke 3(1) 13 (4) 10(3) 3(1) 10(3) 9(3) Deep vein thrombosis Other thromboembolic eventⁱ 1 (<1) 13 (4) 9(3) 13.6 (10.7) 14.1 (10.4) 13.6 (10.7) Hospital-free days, mean (SD)^j Intensive care unit-free days, mean (SD)^k 18.1 (10.8) 19.1 (9.7) 18.5 (10.6) Ventilator-free days, mean (SD)¹ 19.9 (10.8) 20.9 (9.7) 20.2 (10.5) 40(13)(n = 318)50(18)(n = 285)53(19)(n = 285)Mortality


or good recovery])

Rowell, et al, JAMA, 2020

P = .16

<u>Summary</u>

- There is NO risk of thrombosis
- Stop talking about it

Questions? • nealm2@upmc.edu • @macky_neal • Cell: 412 848 2134

Neal lab funding

- R35GM119526-07 NIGMS
- R01HL141080-01A1 NHLBI
- OTA # 10T2HL156812-01 NHLBI
- DM160354 Department of Defense JPC-6 Combat Casualty Care Research Program
- Department of Defense CDMRP JPC-6 Combat Casualty Care Research Program
- Department of Defense W81XWH21107810

THID STATES OF

National Institute of General Medical Sciences

National Heart, Lung, and Blood Institute

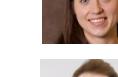
Matthew D. Neal, MD **Co-Director**

Phil Spinella, MD **Co-Director**

Jason Sperry, MD **Associate Director**

Susan Shea, PhD Associate Director

Timothy Billiar, MD Chair, Dept of Surgery



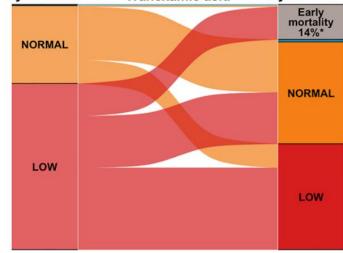
University of Pittsburgh.

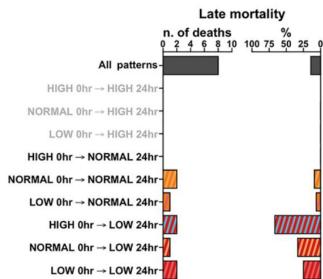
Trauma and Transfusion Medicine Research Center

ANESTHESIOLOGY

Temporal Transitions in Fibrinolysis after Trauma: Adverse Outcome Is Principally Related to Late Hypofibrinolysis

Andrea Rossetto, M.D., Paul Vulliamy, Ph.D., Kim May Lee, Ph.D., Karim Brohi, M.D., Ross Davenport, Ph.D.


ANESTHESIOLOGY 2022; 136:148-61


Α

Maximum Major hemorrhage protocol Maximum No tranexamic acid Lysis at 24hr HIGH Early 29% NORMAL NORMAL LOW LOW

Maximum Major hemorrhage protocol Maximum Lysis at 0hr Tranexamic acid Lysis at 24hr

