Genetic Engineering of Blood Products (RBCs)

Jan Frayne & Ash Toye University of Bristol, UK

- Growing RBCs in lab
- Sustainable erythroid lines as source of RBCs
- Genetic engineering of RBCs
- RBCs as drug delivery and targeting agents

Erythropoiesis in vivo

Primary aim of in vitro grown RBCs for unmet clinical need

MDS

Transfusion-dependent patients

Rare blood types

- erythrocyte alloimmunization, iron overload

Younger cells – reduce transfusion frequency and dose, reduced infectious risks

Research tool to study erythropoiesis in health and disease

Progenitors for *in vitro* generation of Red Blood Cells

- Bone marrow HSC
- Peripheral blood HSC
- Cord blood HSC
- iPSCs
- ESCs

In vitro culture of red blood cells

Growing cells at scale under GMP

Good Manufacturing Practice (GMP) Compliant

NHS

Blood and Transplant

Images courtesy of Sabine Taylor, Nicky Cogan and Prof. David Anstee (NHSBT)

RESTORE: Recovery and Survival of Stem Cell Originated Red Cells

• Phase 1

Led by Prof Cedric Ghevaert and Dr Rebecca Cardigan

Hurdles with cultures

Cord Blood CD34⁺

Scalability Repeat HSC donations Available blood groups

Creating immortalised adult erythroid line (BEL-A)

>40% enucleation

Differentiated BEL-A cells have adult phenotype

Extensively Characterised

BEL-A

 PB

α-globin

β-globin

γ-globin

- Trakarnsanga et al Nat Comm 2017
- Daniels et al Haematologica 2019

- Do not require repeat collection of donor stem cells
- 12 different immortalised erythroid cell lines using same methodology from BM, PB, CB CD34⁺ cells
- Create with chosen blood group phenotype line has phenotype of the original donor
- Provides a scalable, sustainable source of red blood cells

Lines from more accessible Peripheral & Cord Blood CD34+ recapitulate phenotype of donor erythroid cells

Differentiated BEL-A cells have adult phenotype

Extensively Characterised

- Trakarnsanga et al Nat Comm 2017
- Daniels et al Haematologica 2019
 - × 22 α-globin β-globin γ-globin

- First immortalised adult human erythroid line, recapitulates adult erythropoiesis, produces reticulocytes
- Do not require repeat collection of donor stem cells
- 12 different immortalised erythroid cell lines using same methodology from BM, PB, CB CD34⁺ cells
- Create with chosen blood group phenotype line has phenotype of the original donor
- Provides a scalable, sustainable source of red blood cells

Platform for CRISPR gene editing of BEL-A cells

>40% enucleation

Platform for CRISPR gene editing of BEL-A cells

CRISPR Fluorescent Conversion Assay to validate reagents to improve HDR efficiency

Up to 50% endogenous genes

BFP: ...CCACCCTGACCCATGGCGTGCAGTGCTTCAGCCGCTA...

GFP: ...CCACCCTGACGTACGGCGTGCAGTGCTTCAGCCGCTA...

3 bp edit from BFP to GFP

Applications of BEL-A gene editing

RBC disease lines from BEL-A as research tools and drug screening platforms

- β-thalassemia lines CD41/42 –TTCT, IVS1-1, IVS1-100
- α-thalassemia major lines
- Sickle cell disease lines β6Glu->Val
- CDA IV lines E325K KLF1

CRISPRa to induce/increase expression of endogenous genes in BEL-A

myc tag introduced at 5' of genes

Improving compatibility and properties of BEL-A erythroid cells

Improved compatibility or make more "Universal blood"

Improved efficiency

Improved survival/storage characteristics

Improved oxygen carrying capacity and delivery

Defining the clinical requirement

Survey for problematic transfusion requirements where matched blood could not be fulfilled or supplies scarce

(11/2014-01/2015) + (05/2015-05/2016)

Raw data courtesy of Dr. Fiona Regan NHSBT,

London.

Blood Group System	Patients with Alloantibodies	Alloantibodies identified	
MNS (GPB)	22	U, S, s	
Rh	19	D, C, c, E, e, Hr ^B , hr ^B , Hr _o , MAR, C ^w	
Duffy	10 (+2)	Fyª, Fy ^b , Fy3	
Kell	10	K, k, Kpª	
ABO (H)	8	H (Bombay Phenotype)	
Lutheran	3	Luª, Lu ^b	
Kidd	3	Jkp	

- 18 patients (mainly sickle cell) have alloantibodies to more than one blood group 48 of 56 patients could be serviced by the removal of just 5 blood group proteins Individual null phenotypes occur naturally without clinical phenotype (mild for Rh null)
 - Generate lines from individuals with relevant rare blood types
 - Gene editing to customise cells with individual or combined multiple null phenotypes to broaden transfusion compatibility

Production of a bank of BEL-A sublines with single blood group knockouts

Engineering a more compatible red blood cell

Hawksworth et al EMBO Mol Med 2018

RBCs as drug delivery and targeting agents Engineering RBCs to add new functionality to solve clinical problems

Requires fewer cells than transfusion

Engineering erythroid cells to express & retain functional thymidine phosphorylase

Deficiency of thymidine phosphorylase causes Mitochondrial Gastrointestinal Encephalopathy (MNGIE)

Patients have very high levels of thymidine in the body, which damages mitochondrial DNA and affects the gastrointestinal and nervous systems

Hypothesis: expression of thymidine phosphorylase in red blood cells could break down excess thymidine

RBCs as drug delivery and targeting agents Engineering RBCs to add new functionality to solve clinical problems

Tagging surface of RBCs

Ectopic expression of tagged membrane protein/hybrid protein Tag endogenous gene using CRISPR Or tagging surface mature RBC

RBCs as drug delivery and targeting agents

Summary

- We can grow red blood cells in the laboratory, with identical features to endogenous cells
- Developed immortalised erythroid cell lines with phenotype of donor, providing a sustainable supply of banked red cells
- Genetic engineering of BEL-A to create desirable or multi-compatible red cells by gene knockout - with knock ins now possible meaning selected blood group polymorphisms can be introduced. Engineered cells can be banked
- Genetic engineering for enhanced red cell properties
- Genetic engineering to utilize red cells as drug delivery and targeting agents

Acknowledgements

Frayne Lab Debbie Daniels Kontanga Trakarnsanga Joe Hawksworth Ivan Ferrer Vicens Daniel Ferguson

NHSBT Filton R&D Sabine Kupzig Nicola Cogan

Toye lab Marjolein Meinders Hannah Langlands Tim Satchwell

RESTORE Team

wellcometrust

Nanocarriers

Natural Polymers			Sy
 Chitosan Pullulan Dextran Hyaluronic acid Cycloamylos Glucan Curdlan 	 Dextrin Gelatin Hydroxypropyl cellulose 	 Alginate Heparin Chondroitin sulfate 	 Polyet Polyad Polygl Variou

Inthetic Polymers

- thylene glycol
- crylamide
- lycerol
- is polypeptides

Donor selection for lab grown blood

Considerations:

Currently ISBT recognises ~378 blood group antigens of which 345 fall into one of ~43 Blood group systems

Type O blood is accepted as the most "Universal"

After ABO antigen the RhD antigen is most immunogenic followed by

K, E, c, Fy^{a,} Jk^a and S antigens

It has been calculated using previous blood requirements for France that 2 donor derived iPSC cell lines could theoretically cover 98.6% of patient blood needs in France^{*}

*Peyrard et al Transfus Med Rev 2011

#ISBT2022

